These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 17887904)
1. Poromechanics of compressible charged porous media using the theory of mixtures. Huyghe JM; Molenaar MM; Baajens FP J Biomech Eng; 2007 Oct; 129(5):776-85. PubMed ID: 17887904 [TBL] [Abstract][Full Text] [Related]
2. [Mechanical response numerical analysis of bone tissue based on liquid saturated biphasic porous medium model]. Li D; Chen H; Wang Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Jun; 21(3):381-6. PubMed ID: 15250138 [TBL] [Abstract][Full Text] [Related]
3. Numerical simulation of deformations and electrical potentials in a cartilage substitute. Frijns AJ; Huyghe JM; Kaasschieter EF; Wijlaars MW Biorheology; 2003; 40(1-3):123-31. PubMed ID: 12454396 [TBL] [Abstract][Full Text] [Related]
4. A nonlinear biphasic viscohyperelastic model for articular cartilage. García JJ; Cortés DH J Biomech; 2006; 39(16):2991-8. PubMed ID: 16316659 [TBL] [Abstract][Full Text] [Related]
5. On the thermodynamical admissibility of the triphasic theory of charged hydrated tissues. Huyghe JM; Wilson W; Malakpoor K J Biomech Eng; 2009 Apr; 131(4):044504. PubMed ID: 19275446 [TBL] [Abstract][Full Text] [Related]
6. The influence of fiber orientation on the equilibrium properties of neutral and charged biphasic tissues. Nagel T; Kelly DJ J Biomech Eng; 2010 Nov; 132(11):114506. PubMed ID: 21034158 [TBL] [Abstract][Full Text] [Related]
7. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces. Chan B; Donzelli PS; Spilker RL Ann Biomed Eng; 2000 Jun; 28(6):589-97. PubMed ID: 10983705 [TBL] [Abstract][Full Text] [Related]
8. An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Ehlers W; Karajan N; Markert B Biomech Model Mechanobiol; 2009 Jun; 8(3):233-51. PubMed ID: 18661285 [TBL] [Abstract][Full Text] [Related]
9. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. Sandino C; Planell JA; Lacroix D J Biomech; 2008; 41(5):1005-14. PubMed ID: 18255075 [TBL] [Abstract][Full Text] [Related]
10. Poro-viscoelastic behavior of gelatin hydrogels under compression-implications for bioelasticity imaging. Kalyanam S; Yapp RD; Insana MF J Biomech Eng; 2009 Aug; 131(8):081005. PubMed ID: 19604017 [TBL] [Abstract][Full Text] [Related]
11. Deformation partitioning provides insight into elastic, plastic, and viscous contributions to bone material behavior. Ferguson VL J Mech Behav Biomed Mater; 2009 Aug; 2(4):364-74. PubMed ID: 19627843 [TBL] [Abstract][Full Text] [Related]
12. Electroosmosis in homogeneously charged micro- and nanoscale random porous media. Wang M; Chen S J Colloid Interface Sci; 2007 Oct; 314(1):264-73. PubMed ID: 17585928 [TBL] [Abstract][Full Text] [Related]
13. The generalized triphasic correspondence principle for simultaneous determination of the mechanical properties and proteoglycan content of articular cartilage by indentation. Lu XL; Miller C; Chen FH; Guo XE; Mow VC J Biomech; 2007; 40(11):2434-41. PubMed ID: 17222852 [TBL] [Abstract][Full Text] [Related]
14. An electrodynamics-based model for ion diffusion in microbial polysaccharides. Liu C; Zachara JM; Felmy A; Gorby Y Colloids Surf B Biointerfaces; 2004 Oct; 38(1-2):55-65. PubMed ID: 15465305 [TBL] [Abstract][Full Text] [Related]
15. Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration. Lee SY; Pereira BP; Yusof N; Selvaratnam L; Yu Z; Abbas AA; Kamarul T Acta Biomater; 2009 Jul; 5(6):1919-25. PubMed ID: 19289306 [TBL] [Abstract][Full Text] [Related]
16. Diffusion of ions in unsaturated porous materials. Revil A; Jougnot D J Colloid Interface Sci; 2008 Mar; 319(1):226-35. PubMed ID: 18083179 [TBL] [Abstract][Full Text] [Related]
17. Ionic Diffusivity, Electrical Conductivity, Membrane and Thermoelectric Potentials in Colloids and Granular Porous Media: A Unified Model. Revil A J Colloid Interface Sci; 1999 Apr; 212(2):503-522. PubMed ID: 10092382 [TBL] [Abstract][Full Text] [Related]
18. Primary electroviscous effect in a suspension of charged porous spheres. Natraj V; Chen SB J Colloid Interface Sci; 2002 Jul; 251(1):200-7. PubMed ID: 16290719 [TBL] [Abstract][Full Text] [Related]
19. Mechanical effects of ionic replacements in articular cartilage. Part I: The constitutive model. Loret B; Simões FM Biomech Model Mechanobiol; 2005 Nov; 4(2-3):63-80. PubMed ID: 16001249 [TBL] [Abstract][Full Text] [Related]
20. The modified cam clay model for constrained compression of human morsellised bone: effects of porosity on the mechanical behaviour. Lunde KB; Skallerud B J Mech Behav Biomed Mater; 2009 Jan; 2(1):43-50. PubMed ID: 19627806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]