These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17887954)

  • 21. Active site prediction using evolutionary and structural information.
    Sankararaman S; Sha F; Kirsch JF; Jordan MI; Sjölander K
    Bioinformatics; 2010 Mar; 26(5):617-24. PubMed ID: 20080507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between global structural parameters and Enzyme Commission hierarchy: implications for function prediction.
    Boareto M; Yamagishi ME; Caticha N; Leite VB
    Comput Biol Chem; 2012 Oct; 40():15-9. PubMed ID: 22926016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. iCataly-PseAAC: Identification of Enzymes Catalytic Sites Using Sequence Evolution Information with Grey Model GM (2,1).
    Xiao X; Hui MJ; Liu Z; Qiu WR
    J Membr Biol; 2015 Dec; 248(6):1033-41. PubMed ID: 26077845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of posttranslational modification of proteins from their amino acid sequence.
    Eisenhaber B; Eisenhaber F
    Methods Mol Biol; 2010; 609():365-84. PubMed ID: 20221930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-guided approach for detecting large domain inserts in protein sequences as illustrated using the haloacid dehalogenase superfamily.
    Pandya C; Dunaway-Mariano D; Xia Y; Allen KN
    Proteins; 2014 Sep; 82(9):1896-906. PubMed ID: 24577717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local structure based method for prediction of the biochemical function of proteins: Applications to glycoside hydrolases.
    Parasuram R; Mills CL; Wang Z; Somasundaram S; Beuning PJ; Ondrechen MJ
    Methods; 2016 Jan; 93():51-63. PubMed ID: 26564235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using a neural network and spatial clustering to predict the location of active sites in enzymes.
    Gutteridge A; Bartlett GJ; Thornton JM
    J Mol Biol; 2003 Jul; 330(4):719-34. PubMed ID: 12850142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein structure based prediction of catalytic residues.
    Fajardo JE; Fiser A
    BMC Bioinformatics; 2013 Feb; 14():63. PubMed ID: 23433045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amino acid network for prediction of catalytic residues in enzymes: a comparison survey.
    Zhou J; Yan W; Hu G; Shen B
    Curr Protein Pept Sci; 2016; 17(1):41-51. PubMed ID: 26412789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ResBoost: characterizing and predicting catalytic residues in enzymes.
    Alterovitz R; Arvey A; Sankararaman S; Dallett C; Freund Y; Sjölander K
    BMC Bioinformatics; 2009 Jun; 10():197. PubMed ID: 19558703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining structure and sequence information allows automated prediction of substrate specificities within enzyme families.
    Röttig M; Rausch C; Kohlbacher O
    PLoS Comput Biol; 2010 Jan; 6(1):e1000636. PubMed ID: 20072606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis.
    Du Y; Wu NC; Jiang L; Zhang T; Gong D; Shu S; Wu TT; Sun R
    mBio; 2016 Nov; 7(6):. PubMed ID: 27803181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced performance in prediction of protein active sites with THEMATICS and support vector machines.
    Tong W; Williams RJ; Wei Y; Murga LF; Ko J; Ondrechen MJ
    Protein Sci; 2008 Feb; 17(2):333-41. PubMed ID: 18096640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationships between functional subclasses and information contained in active-site and ligand-binding residues in diverse superfamilies.
    Nagao C; Nagano N; Mizuguchi K
    Proteins; 2010 Aug; 78(10):2369-84. PubMed ID: 20544971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated method for predicting enzyme functional surfaces and locating key residues with accuracy and specificity.
    Tseng YY; Liang J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4552-5. PubMed ID: 17947099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular and structural basis of drift in the functions of closely-related homologous enzyme domains: implications for function annotation based on homology searches and structural genomics.
    Roy A; Srinivasan N; Gowri VS
    In Silico Biol; 2009; 9(1-2):S41-55. PubMed ID: 19537164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting enzymatic function from global binding site descriptors.
    Volkamer A; Kuhn D; Rippmann F; Rarey M
    Proteins; 2013 Mar; 81(3):479-89. PubMed ID: 23150100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Looking at enzymes from the inside out: the proximity of catalytic residues to the molecular centroid can be used for detection of active sites and enzyme-ligand interfaces.
    Ben-Shimon A; Eisenstein M
    J Mol Biol; 2005 Aug; 351(2):309-26. PubMed ID: 16019028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs.
    Busk PK; Lange L
    Appl Environ Microbiol; 2013 Jun; 79(11):3380-91. PubMed ID: 23524681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of protein B-factor profiles.
    Yuan Z; Bailey TL; Teasdale RD
    Proteins; 2005 Mar; 58(4):905-12. PubMed ID: 15645415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.