These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17887954)

  • 41. Structure-specificity relationships in Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus T6.
    Lansky S; Salama R; Solomon HV; Feinberg H; Belrhali H; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):2994-3012. PubMed ID: 25372689
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Locating the active sites of enzymes using mechanical properties.
    Sacquin-Mora S; Laforet E; Lavery R
    Proteins; 2007 May; 67(2):350-9. PubMed ID: 17311346
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wavelet transform analysis of NMR structure ensembles to reveal internal fluctuations of enzymes.
    Hu M; Li Y; Yang G; Li G; Li M; Wen Z
    Amino Acids; 2012 May; 42(5):1773-81. PubMed ID: 21479702
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The chemistry of protein catalysis.
    Holliday GL; Almonacid DE; Mitchell JB; Thornton JM
    J Mol Biol; 2007 Oct; 372(5):1261-77. PubMed ID: 17727879
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Homology-based modeling of 3D structures of protein-protein complexes using alignments of modified sequence profiles.
    Kundrotas PJ; Lensink MF; Alexov E
    Int J Biol Macromol; 2008 Aug; 43(2):198-208. PubMed ID: 18572239
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-wide enzyme annotation with precision control: catalytic families (CatFam) databases.
    Yu C; Zavaljevski N; Desai V; Reifman J
    Proteins; 2009 Feb; 74(2):449-60. PubMed ID: 18636476
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Understanding the functional roles of amino acid residues in enzyme catalysis.
    Holliday GL; Mitchell JB; Thornton JM
    J Mol Biol; 2009 Jul; 390(3):560-77. PubMed ID: 19447117
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Understanding the function of conserved variations in the catalytic loops of fungal glycoside hydrolase family 12.
    Damásio AR; Rubio MV; Oliveira LC; Segato F; Dias BA; Citadini AP; Paixão DA; Squina FM
    Biotechnol Bioeng; 2014 Aug; 111(8):1494-505. PubMed ID: 24578305
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effective function annotation through catalytic residue conservation.
    George RA; Spriggs RV; Bartlett GJ; Gutteridge A; MacArthur MW; Porter CT; Al-Lazikani B; Thornton JM; Swindells MB
    Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12299-304. PubMed ID: 16037208
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis and prediction of the location of catalytic residues in enzymes.
    Zvelebil MJ; Sternberg MJ
    Protein Eng; 1988 Jul; 2(2):127-38. PubMed ID: 3244695
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The geometry of interactions between catalytic residues and their substrates.
    Torrance JW; Holliday GL; Mitchell JB; Thornton JM
    J Mol Biol; 2007 Jun; 369(4):1140-52. PubMed ID: 17466330
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein function prediction via graph kernels.
    Borgwardt KM; Ong CS; Schönauer S; Vishwanathan SV; Smola AJ; Kriegel HP
    Bioinformatics; 2005 Jun; 21 Suppl 1():i47-56. PubMed ID: 15961493
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prediction of active site cleft using support vector machines.
    Sonavane S; Chakrabarti P
    J Chem Inf Model; 2010 Dec; 50(12):2266-73. PubMed ID: 21080689
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New computational approaches to understanding molecular protein function.
    Fetrow JS; Babbitt PC
    PLoS Comput Biol; 2018 Apr; 14(4):e1005756. PubMed ID: 29621256
    [No Abstract]   [Full Text] [Related]  

  • 56. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework.
    Song J; Li F; Takemoto K; Haffari G; Akutsu T; Chou KC; Webb GI
    J Theor Biol; 2018 Apr; 443():125-137. PubMed ID: 29408627
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of evolutionary conservation patterns and their influence on identifying protein functional sites.
    Fang C; Noguchi T; Yamana H
    J Bioinform Comput Biol; 2014 Oct; 12(5):1440003. PubMed ID: 25362840
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catalysing new reactions during evolution: economy of residues and mechanism.
    Bartlett GJ; Borkakoti N; Thornton JM
    J Mol Biol; 2003 Aug; 331(4):829-60. PubMed ID: 12909013
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CMASA: an accurate algorithm for detecting local protein structural similarity and its application to enzyme catalytic site annotation.
    Li GH; Huang JF
    BMC Bioinformatics; 2010 Aug; 11():439. PubMed ID: 20796320
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Disentangling evolutionary signals: conservation, specificity determining positions and coevolution. Implication for catalytic residue prediction.
    Teppa E; Wilkins AD; Nielsen M; Buslje CM
    BMC Bioinformatics; 2012 Sep; 13():235. PubMed ID: 22978315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.