These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17887954)

  • 61. L1pred: a sequence-based prediction tool for catalytic residues in enzymes with the L1-logreg classifier.
    Dou Y; Wang J; Yang J; Zhang C
    PLoS One; 2012; 7(4):e35666. PubMed ID: 22558194
    [TBL] [Abstract][Full Text] [Related]  

  • 62. DeepEnzyme: a robust deep learning model for improved enzyme turnover number prediction by utilizing features of protein 3D-structures.
    Wang T; Xiang G; He S; Su L; Wang Y; Yan X; Lu H
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39162313
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Prediction of detailed enzyme functions and identification of specificity determining residues by random forests.
    Nagao C; Nagano N; Mizuguchi K
    PLoS One; 2014; 9(1):e84623. PubMed ID: 24416252
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Combining specificity determining and conserved residues improves functional site prediction.
    Kalinina OV; Gelfand MS; Russell RB
    BMC Bioinformatics; 2009 Jun; 10():174. PubMed ID: 19508719
    [TBL] [Abstract][Full Text] [Related]  

  • 65. On the structural context and identification of enzyme catalytic residues.
    Chien YT; Huang SW
    Biomed Res Int; 2013; 2013():802945. PubMed ID: 23484160
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes.
    Jack BR; Meyer AG; Echave J; Wilke CO
    PLoS Biol; 2016 May; 14(5):e1002452. PubMed ID: 27138088
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A measure of the broad substrate specificity of enzymes based on 'duplicate' catalytic residues.
    Chakraborty S; Ásgeirsson B; Rao BJ
    PLoS One; 2012; 7(11):e49313. PubMed ID: 23166637
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes.
    Furnham N; Holliday GL; de Beer TA; Jacobsen JO; Pearson WR; Thornton JM
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D485-9. PubMed ID: 24319146
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rapid catalytic template searching as an enzyme function prediction procedure.
    Nilmeier JP; Kirshner DA; Wong SE; Lightstone FC
    PLoS One; 2013; 8(5):e62535. PubMed ID: 23675414
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Identification of catalytic residues using a novel feature that integrates the microenvironment and geometrical location properties of residues.
    Han L; Zhang YJ; Song J; Liu MS; Zhang Z
    PLoS One; 2012; 7(7):e41370. PubMed ID: 22829945
    [TBL] [Abstract][Full Text] [Related]  

  • 71. EXIA2: web server of accurate and rapid protein catalytic residue prediction.
    Lu CH; Yu CS; Chien YT; Huang SW
    Biomed Res Int; 2014; 2014():807839. PubMed ID: 25295274
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Computational reconstruction of primordial prototypes of elementary functional loops in modern proteins.
    Goncearenco A; Berezovsky IN
    Bioinformatics; 2011 Sep; 27(17):2368-75. PubMed ID: 21724592
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Structure-based identification of catalytic residues.
    Yahalom R; Reshef D; Wiener A; Frankel S; Kalisman N; Lerner B; Keasar C
    Proteins; 2011 Jun; 79(6):1952-63. PubMed ID: 21491495
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A matching algorithm for catalytic residue site selection in computational enzyme design.
    Lei Y; Luo W; Zhu Y
    Protein Sci; 2011 Sep; 20(9):1566-75. PubMed ID: 21714026
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A simple extension to the CMASA method for the prediction of catalytic residues in the presence of single point mutations.
    Flores DI; Sotelo-Mundo RR; Brizuela CA
    PLoS One; 2014; 9(9):e108513. PubMed ID: 25268770
    [TBL] [Abstract][Full Text] [Related]  

  • 76. SABER: a computational method for identifying active sites for new reactions.
    Nosrati GR; Houk KN
    Protein Sci; 2012 May; 21(5):697-706. PubMed ID: 22492397
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Sequence and structural differences between enzyme and nonenzyme homologs.
    Todd AE; Orengo CA; Thornton JM
    Structure; 2002 Oct; 10(10):1435-51. PubMed ID: 12377129
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Automatic prediction of catalytic residues by modeling residue structural neighborhood.
    Cilia E; Passerini A
    BMC Bioinformatics; 2010 Mar; 11():115. PubMed ID: 20199672
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Active Site-Induced Evolutionary Constraints Follow Fold Polarity Principles in Soluble Globular Enzymes.
    Mayorov A; Dal Peraro M; Abriata LA
    Mol Biol Evol; 2019 Aug; 36(8):1728-1733. PubMed ID: 31004173
    [TBL] [Abstract][Full Text] [Related]  

  • 80. From sequence to enzyme mechanism using multi-label machine learning.
    De Ferrari L; Mitchell JB
    BMC Bioinformatics; 2014 May; 15():150. PubMed ID: 24885296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.