Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 17888029)

  • 1. Association of microRNA-34a overexpression with proliferation is cell type-dependent.
    Dutta KK; Zhong Y; Liu YT; Yamada T; Akatsuka S; Hu Q; Yoshihara M; Ohara H; Takehashi M; Shinohara T; Masutani H; Onuki J; Toyokuni S
    Cancer Sci; 2007 Dec; 98(12):1845-52. PubMed ID: 17888029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis identifies a tumor suppressor role for aminoacylase 1 in iron-induced rat renal cell carcinoma.
    Zhong Y; Onuki J; Yamasaki T; Ogawa O; Akatsuka S; Toyokuni S
    Carcinogenesis; 2009 Jan; 30(1):158-64. PubMed ID: 19028700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stage-specific roles of fibulin-5 during oxidative stress-induced renal carcinogenesis in rats.
    Ohara H; Akatsuka S; Nagai H; Liu YT; Jiang L; Okazaki Y; Yamashita Y; Nakamura T; Toyokuni S
    Free Radic Res; 2011 Feb; 45(2):211-20. PubMed ID: 20942562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c.
    Nakada C; Matsuura K; Tsukamoto Y; Tanigawa M; Yoshimoto T; Narimatsu T; Nguyen LT; Hijiya N; Uchida T; Sato F; Mimata H; Seto M; Moriyama M
    J Pathol; 2008 Dec; 216(4):418-27. PubMed ID: 18925646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific allelic loss of p16 (INK4A) tumor suppressor gene after weeks of iron-mediated oxidative damage during rat renal carcinogenesis.
    Hiroyasu M; Ozeki M; Kohda H; Echizenya M; Tanaka T; Hiai H; Toyokuni S
    Am J Pathol; 2002 Feb; 160(2):419-24. PubMed ID: 11839561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells.
    Welch C; Chen Y; Stallings RL
    Oncogene; 2007 Jul; 26(34):5017-22. PubMed ID: 17297439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression and amplification of c-myc in the Syrian hamster kidney during estrogen carcinogenesis: a probable critical role in neoplastic transformation.
    Li JJ; Hou X; Banerjee SK; Liao DZ; Maggouta F; Norris JS; Li SA
    Cancer Res; 1999 May; 59(10):2340-6. PubMed ID: 10344741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox regulation of annexin 2 and its implications for oxidative stress-induced renal carcinogenesis and metastasis.
    Tanaka T; Akatsuka S; Ozeki M; Shirase T; Hiai H; Toyokuni S
    Oncogene; 2004 May; 23(22):3980-9. PubMed ID: 15048081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met.
    Yan D; Zhou X; Chen X; Hu DN; Dong XD; Wang J; Lu F; Tu L; Qu J
    Invest Ophthalmol Vis Sci; 2009 Apr; 50(4):1559-65. PubMed ID: 19029026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA, SND1, and alterations in translational regulation in colon carcinogenesis.
    Tsuchiya N; Nakagama H
    Mutat Res; 2010 Nov; 693(1-2):94-100. PubMed ID: 20883704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miRNA-34a suppresses cell proliferation and metastasis by targeting CD44 in human renal carcinoma cells.
    Yu G; Li H; Wang J; Gumireddy K; Li A; Yao W; Tang K; Xiao W; Hu J; Xiao H; Lang B; Ye Z; Huang Q; Xu H
    J Urol; 2014 Oct; 192(4):1229-37. PubMed ID: 24866595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of stress-response and cell proliferation genes in renal cell carcinoma induced by oxidative stress.
    Tanaka T; Kondo S; Iwasa Y; Hiai H; Toyokuni S
    Am J Pathol; 2000 Jun; 156(6):2149-57. PubMed ID: 10854235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [DNA and microRNA microarray technologies in diagnostics and prediction for patients with renal cell carcinoma].
    Slabý O; Svoboda M; Michálek J; Vyzula R
    Klin Onkol; 2009; 22(5):202-9. PubMed ID: 19886357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNAs and their target gene networks in renal cell carcinoma.
    Redova M; Svoboda M; Slaby O
    Biochem Biophys Res Commun; 2011 Feb; 405(2):153-6. PubMed ID: 21232526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells.
    Fujita Y; Kojima K; Hamada N; Ohhashi R; Akao Y; Nozawa Y; Deguchi T; Ito M
    Biochem Biophys Res Commun; 2008 Dec; 377(1):114-9. PubMed ID: 18834855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer.
    Gallardo E; Navarro A; Viñolas N; Marrades RM; Diaz T; Gel B; Quera A; Bandres E; Garcia-Foncillas J; Ramirez J; Monzo M
    Carcinogenesis; 2009 Nov; 30(11):1903-9. PubMed ID: 19736307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the retinoic acid-inducible Gprc5a as a new lung tumor suppressor gene.
    Tao Q; Fujimoto J; Men T; Ye X; Deng J; Lacroix L; Clifford JL; Mao L; Van Pelt CS; Lee JJ; Lotan D; Lotan R
    J Natl Cancer Inst; 2007 Nov; 99(22):1668-82. PubMed ID: 18000218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional screening using a microRNA virus library and microarrays: a new high-throughput assay to identify tumor-suppressive microRNAs.
    Izumiya M; Okamoto K; Tsuchiya N; Nakagama H
    Carcinogenesis; 2010 Aug; 31(8):1354-9. PubMed ID: 20525881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer's disease, inhibits bcl2 translation.
    Wang X; Liu P; Zhu H; Xu Y; Ma C; Dai X; Huang L; Liu Y; Zhang L; Qin C
    Brain Res Bull; 2009 Oct; 80(4-5):268-73. PubMed ID: 19683563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA-143 as a tumor suppressor for bladder cancer.
    Lin T; Dong W; Huang J; Pan Q; Fan X; Zhang C; Huang L
    J Urol; 2009 Mar; 181(3):1372-80. PubMed ID: 19157460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.