BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 17888464)

  • 1. Enzymatic oxidation of gallocatechin and epigallocatechin: effects of C-ring configuration on the reaction products.
    Matsuo Y; Yamada Y; Tanaka T; Kouno I
    Phytochemistry; 2008 Dec; 69(18):3054-61. PubMed ID: 17888464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative coupling of the pyrogallol B-ring with a galloyl group during enzymatic oxidation of epigallocatechin 3-O-gallate.
    Li Y; Tanaka T; Kouno I
    Phytochemistry; 2007 Apr; 68(7):1081-8. PubMed ID: 17320123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three New Oxidation Products Produced from Epigallocatechin-3- O-gallate and Epicatechin-3-O-gallate.
    Li Y; Matsuo Y; Saito Y; Tanaka T
    Nat Prod Commun; 2016 Feb; 11(2):189-92. PubMed ID: 27032198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereochemistry of the Black Tea Pigments Theacitrins A and C.
    Matsuo Y; Okuda K; Morikawa H; Oowatashi R; Saito Y; Tanaka T
    J Nat Prod; 2016 Jan; 79(1):189-95. PubMed ID: 26689950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel black tea pigment and two new oxidation products of epigallocatechin-3-O-gallate.
    Tanaka T; Matsuo Y; Kouno I
    J Agric Food Chem; 2005 Sep; 53(19):7571-8. PubMed ID: 16159188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligomerization Mechanisms of Tea Catechins Involved in the Production of Black Tea Thearubigins.
    Hashiguchi K; Teramoto S; Katayama K; Matsuo Y; Saito Y; Tanaka T
    J Agric Food Chem; 2023 Oct; 71(41):15319-15330. PubMed ID: 37812808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential behaviors of tea catechins under thermal processing: Formation of non-enzymatic oligomers.
    Fan FY; Shi M; Nie Y; Zhao Y; Ye JH; Liang YR
    Food Chem; 2016 Apr; 196():347-54. PubMed ID: 26593500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of epigallocatechin quinone dimers during tea fermentation and formation of theasinensins.
    Tanaka T; Mine C; Watarumi S; Fujioka T; Mihashi K; Zhang YJ; Kouno I
    J Nat Prod; 2002 Nov; 65(11):1582-7. PubMed ID: 12444680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of the black tea pigment theaflavin during enzymatic oxidation of tea catechins.
    Li Y; Shibahara A; Matsuo Y; Tanaka T; Kouno I
    J Nat Prod; 2010 Jan; 73(1):33-9. PubMed ID: 20014758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic characterization of the enzymatic and chemical oxidation of the catechins in green tea.
    Munoz-Munoz JL; García-Molina F; Molina-Alarcón M; Tudela J; García-Cánovas F; Rodríguez-López JN
    J Agric Food Chem; 2008 Oct; 56(19):9215-24. PubMed ID: 18788750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characteristics for superoxide anion radical scavenging and productive activities of green tea polyphenols including proanthocyanidin dimers.
    Sato M; Toyazaki H; Yoshioka Y; Yokoi N; Yamasaki T
    Chem Pharm Bull (Tokyo); 2010 Jan; 58(1):98-102. PubMed ID: 20045974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fungal laccase-catalyzed oxidation of EGCG and the characterization of its products.
    Lee Y; Lin Z; Du G; Deng Z; Yang H; Bai W
    J Sci Food Agric; 2015 Oct; 95(13):2686-92. PubMed ID: 25407933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of epicatechin gallate trimer and tetramer produced by enzymatic oxidation.
    Kusano R; Tanaka T; Matsuo Y; Kouno I
    Chem Pharm Bull (Tokyo); 2007 Dec; 55(12):1768-72. PubMed ID: 18057757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen species scavenging activities and inhibition on DNA oxidative damage of dimeric compounds from the oxidation of (-)-epigallocatechin-3-O-gallate.
    Qi X
    Fitoterapia; 2010 Apr; 81(3):205-9. PubMed ID: 19751808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin with H(2)O(2).
    Zhu N; Huang TC; Yu Y; LaVoie EJ; Yang CS; Ho CT
    J Agric Food Chem; 2000 Apr; 48(4):979-81. PubMed ID: 10775337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green tea catechins prevent low-density lipoprotein oxidation via their accumulation in low-density lipoprotein particles in humans.
    Suzuki-Sugihara N; Kishimoto Y; Saita E; Taguchi C; Kobayashi M; Ichitani M; Ukawa Y; Sagesaka YM; Suzuki E; Kondo K
    Nutr Res; 2016 Jan; 36(1):16-23. PubMed ID: 26773777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligomerization mechanism of epigallocatechin-3-O-gallate during autoxidation.
    Matsuo Y; Katayama K; Yamashita T; Saito Y; Tanaka T
    Food Chem; 2024 Aug; 449():139186. PubMed ID: 38574524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyphenol content of plasma and litter after the oral administration of green tea and tea polyphenols in chickens.
    Zhou YB; Wan XC; Shang YY; Hu JW; Shao L; Chen W; Li DX
    J Agric Food Chem; 2012 Feb; 60(7):1619-27. PubMed ID: 22224899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free radicals generated during oxidation of green tea polyphenols: electron paramagnetic resonance spectroscopy combined with density functional theory calculations.
    Severino JF; Goodman BA; Kay CW; Stolze K; Tunega D; Reichenauer TG; Pirker KF
    Free Radic Biol Med; 2009 Apr; 46(8):1076-88. PubMed ID: 19439236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Progress in catechins oxidation products and their formation mechanism].
    Ding YP; Lu CQ; Hou HX; Cen YJ; Tong HR
    Zhongguo Zhong Yao Za Zhi; 2017 Jan; 42(2):239-253. PubMed ID: 28948726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.