BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 17888466)

  • 1. Biosynthesis of trigonelline from nicotinate mononucleotide in mungbean seedlings.
    Zheng XQ; Matsui A; Ashihara H
    Phytochemistry; 2008 Jan; 69(2):390-5. PubMed ID: 17888466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in trigonelline (N-methylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds.
    Zheng XQ; Hayashibe E; Ashihara H
    J Exp Bot; 2005 Jun; 56(416):1615-23. PubMed ID: 15837705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotinate riboside salvage in plants: presence of nicotinate riboside kinase in mungbean seedlings.
    Matsui A; Ashihara H
    Plant Physiol Biochem; 2008 Jan; 46(1):104-8. PubMed ID: 18042392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis thaliana nicotinate/nicotinamide mononucleotide adenyltransferase (AtNMNAT) is required for pollen tube growth.
    Hashida SN; Takahashi H; Kawai-Yamada M; Uchimiya H
    Plant J; 2007 Feb; 49(4):694-703. PubMed ID: 17270012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallization and preliminary X-ray crystallographic analysis of quinolinate phosphoribosyltransferase from porcine kidney in complex with nicotinate mononucleotide.
    Youn HS; Kim MK; Kang GB; Kim TG; An JY; Lee JG; Park KR; Lee Y; Fukuoka S; Eom SH
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Dec; 68(Pt 12):1488-90. PubMed ID: 23192029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B' methyltransferase family in Coffea arabica.
    Mizuno K; Matsuzaki M; Kanazawa S; Tokiwano T; Yoshizawa Y; Kato M
    Biochem Biophys Res Commun; 2014 Oct; 452(4):1060-6. PubMed ID: 25242520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel assay for simultaneous measurement of pyridine mononucleotides synthesizing activities allows dissection of the NAD(+) biosynthetic machinery in mammalian cells.
    Zamporlini F; Ruggieri S; Mazzola F; Amici A; Orsomando G; Raffaelli N
    FEBS J; 2014 Nov; 281(22):5104-19. PubMed ID: 25223558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyridine metabolism and trigonelline synthesis in leaves of the mangrove legume trees Derris indica (Millettia pinnata) and Caesalpinia crista.
    Yin Y; Sasamoto H; Ashihara H
    Nat Prod Commun; 2011 Dec; 6(12):1835-8. PubMed ID: 22312719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo Biosynthesis of Trigonelline in Fenugreek (Trigonellafoenum-graecum) seedlings.
    Ashihara H
    Nat Prod Commun; 2016 Aug; 11(8):1093-1096. PubMed ID: 30725565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the formation of nicotinic acid conjugates in leaves of different plant species.
    Ashihara H; Yin Y; Katahira R; Watanabe S; Mimura T; Sasamoto H
    Plant Physiol Biochem; 2012 Nov; 60():190-5. PubMed ID: 22983143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation and function of trigonelline in non-leguminous plants.
    Ashihara H; Watanabe S
    Nat Prod Commun; 2014 Jun; 9(6):795-8. PubMed ID: 25115081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyridine salvage and nicotinic acid conjugate synthesis in leaves of mangrove species.
    Ashihara H; Yin Y; Deng WW; Watanabe S
    Phytochemistry; 2010 Jan; 71(1):47-53. PubMed ID: 19913262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Metabolism of nicotinic acid in plant cell suspension cultures, III: Formation and metabolism of trigonelline (author's transl)].
    Heeger V; Leienbach KW; Barz W
    Hoppe Seylers Z Physiol Chem; 1976 Aug; 357(8):1081-7. PubMed ID: 185134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genomics of NAD(P) biosynthesis and novel antibiotic drug targets.
    Bi J; Wang H; Xie J
    J Cell Physiol; 2011 Feb; 226(2):331-40. PubMed ID: 20857400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyridine metabolism in tea plants: salvage, conjugate formation and catabolism.
    Ashihara H; Deng WW
    J Plant Res; 2012 Nov; 125(6):781-91. PubMed ID: 22527843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High performance liquid chromatography separation of the intermediates of pyridine coenzymes metabolism in Ricinus communis L. seedlings.
    Martelli P; Bovalini L; Ferri S; Franchi GG
    Ital J Biochem; 1984; 33(2):98-105. PubMed ID: 6735686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical studies of the quinolinic acid to nicotinic acid mononucleotide transformation.
    Rozenberg A; Lee JK
    J Org Chem; 2008 Dec; 73(23):9314-9. PubMed ID: 18954112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Divalent Metal Ion on the Structure, Stability and Function of
    Jeje O; Maake R; van Deventer R; Esau V; Iwuchukwu EA; Meyer V; Khoza T; Achilonu I
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the Escherichia coli nicotinic acid mononucleotide adenylyltransferase gene.
    Mehl RA; Kinsland C; Begley TP
    J Bacteriol; 2000 Aug; 182(15):4372-4. PubMed ID: 10894752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new paradigm for biochemical energy coupling. Salmonella typhimurium nicotinate phosphoribosyltransferase.
    Vinitsky A; Grubmeyer C
    J Biol Chem; 1993 Dec; 268(34):26004-10. PubMed ID: 7503993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.