BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17888713)

  • 1. Effects of varying material properties on the load deformation characteristics of heel cushions.
    Sun PC; Wei HW; Chen CH; Wu CH; Kao HC; Cheng CK
    Med Eng Phys; 2008 Jul; 30(6):687-92. PubMed ID: 17888713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation characteristics of the heel region of the shod foot during a simulated heel strike: the effect of varying midsole hardness.
    Aerts P; De Clercq D
    J Sports Sci; 1993 Oct; 11(5):449-61. PubMed ID: 8301705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical energy and effective foot mass during impact loading of walking and running.
    Chi KJ; Schmitt D
    J Biomech; 2005 Jul; 38(7):1387-95. PubMed ID: 15922749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo examination of the dynamic properties of the human heel pad.
    Kinoshita H; Ogawa T; Kuzuhara K; Ikuta K
    Int J Sports Med; 1993 Aug; 14(6):312-9. PubMed ID: 8407060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanics of running shoe performance.
    Cook SD; Kester MA; Brunet ME; Haddad RJ
    Clin Sports Med; 1985 Oct; 4(4):619-26. PubMed ID: 4053192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanical properties of the human subcalcaneal fat pad in compression.
    Bennett MB; Ker RF
    J Anat; 1990 Aug; 171():131-8. PubMed ID: 2081699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on the load-displacement curves of a human healthy heel pad: In vivo compression data compared to numerical results.
    Fontanella CG; Matteoli S; Carniel EL; Wilhjelm JE; Virga A; Corvi A; Natali AN
    Med Eng Phys; 2012 Nov; 34(9):1253-9. PubMed ID: 22265099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of plantar heel pressures: Insole design using finite element analysis.
    Goske S; Erdemir A; Petre M; Budhabhatti S; Cavanagh PR
    J Biomech; 2006; 39(13):2363-70. PubMed ID: 16197952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bulk compressive properties of the heel fat pad during walking: a pilot investigation in plantar heel pain.
    Wearing SC; Smeathers JE; Yates B; Urry SR; Dubois P
    Clin Biomech (Bristol, Avon); 2009 May; 24(4):397-402. PubMed ID: 19232452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attenuation of spinal transients at heel strike using viscoelastic heel insoles: an in vivo study.
    Folman Y; Wosk J; Shabat S; Gepstein R
    Prev Med; 2004 Aug; 39(2):351-4. PubMed ID: 15226045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressive behavior after simulated service conditions of some foamed materials intended as orthotic shoe insoles.
    Campbell GJ; McLure M; Newell EN
    J Rehabil Res Dev; 1984 Jul; 21(2):57-65. PubMed ID: 6530678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies.
    Even-Tzur N; Weisz E; Hirsch-Falk Y; Gefen A
    Biomed Mater Eng; 2006; 16(5):289-99. PubMed ID: 17075164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of shoe characteristics on dynamic stability when walking on even and uneven surfaces in young and older people.
    Menant JC; Perry SD; Steele JR; Menz HB; Munro BJ; Lord SR
    Arch Phys Med Rehabil; 2008 Oct; 89(10):1970-6. PubMed ID: 18760402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of heel-pad thickness and loading protocol on measured heel-pad stiffness and a standardized protocol for inter-subject comparability.
    Spears IR; Miller-Young JE
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):204-12. PubMed ID: 16289518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromotion at the fracture site after tibial nailing with four unreamed small-diameter nails--a biomechanical study using a distal tibia fracture model.
    Schüller M; Weninger P; Tschegg E; Jamek M; Redl H; Stanzl-Tschegg S
    J Trauma; 2009 May; 66(5):1391-7. PubMed ID: 19430244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis of heel pad with insoles.
    Luo G; Houston VL; Garbarini MA; Beattie AC; Thongpop C
    J Biomech; 2011 May; 44(8):1559-65. PubMed ID: 21420682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.
    Naemi R; Chatzistergos PE; Chockalingam N
    Med Biol Eng Comput; 2016 Mar; 54(2-3):341-50. PubMed ID: 26044551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biomechanical evaluation of sorbothane.
    Cinats J; Reid DC; Haddow JB
    Clin Orthop Relat Res; 1987 Sep; (222):281-8. PubMed ID: 3621732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rearward movement of the heel at heel strike.
    McGorry RW; Chang CC; DiDomenico A
    Appl Ergon; 2008 Nov; 39(6):678-84. PubMed ID: 18280459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heel-shoe interactions and the durability of EVA foam running-shoe midsoles.
    Verdejo R; Mills NJ
    J Biomech; 2004 Sep; 37(9):1379-86. PubMed ID: 15275845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.