BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 17888886)

  • 1. Attenuation of actinomyosinII contractile activity in growth cones accelerates filopodia-guided and microtubule-based neurite elongation.
    Rösner H; Möller W; Wassermann T; Mihatsch J; Blum M
    Brain Res; 2007 Oct; 1176():1-10. PubMed ID: 17888886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actomyosin-dependent microtubule rearrangement in lysophosphatidic acid-induced neurite remodeling of young cortical neurons.
    Fukushima N; Morita Y
    Brain Res; 2006 Jun; 1094(1):65-75. PubMed ID: 16690038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rac1-dependent actin filament organization in growth cones is necessary for beta1-integrin-mediated advance but not for growth on poly-D-lysine.
    Kuhn TB; Brown MD; Bamburg JR
    J Neurobiol; 1998 Dec; 37(4):524-40. PubMed ID: 9858256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of neurite outgrowth and growth cone motility by phosphatidylinositol-3-kinase.
    Tornieri K; Welshhans K; Geddis MS; Rehder V
    Cell Motil Cytoskeleton; 2006 Apr; 63(4):173-92. PubMed ID: 16463277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cdc42 stimulates neurite outgrowth and formation of growth cone filopodia and lamellipodia.
    Brown MD; Cornejo BJ; Kuhn TB; Bamburg JR
    J Neurobiol; 2000 Jun; 43(4):352-64. PubMed ID: 10861561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry.
    Rajnicek AM; Foubister LE; McCaig CD
    J Cell Sci; 2006 May; 119(Pt 9):1736-45. PubMed ID: 16595545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubule and Rac 1-dependent F-actin in growth cones.
    Grabham PW; Reznik B; Goldberg DJ
    J Cell Sci; 2003 Sep; 116(Pt 18):3739-48. PubMed ID: 12890754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S; Kalil K
    J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibronectin and laminin elicit differential behaviors from SH-SY5Y growth cones contacting inhibitory chondroitin sulfate proteoglycans.
    Hynds DL; Snow DM
    J Neurosci Res; 2001 Nov; 66(4):630-42. PubMed ID: 11746383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth cone behavior in the presence of soluble chondroitin sulfate proteoglycan (CSPG), compared to behavior on CSPG bound to laminin or fibronectin.
    Snow DM; Brown EM; Letourneau PC
    Int J Dev Neurosci; 1996 Jun; 14(3):331-49. PubMed ID: 8842808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two distinct filopodia populations at the growth cone allow to sense nanotopographical extracellular matrix cues to guide neurite outgrowth.
    Jang KJ; Kim MS; Feltrin D; Jeon NL; Suh KY; Pertz O
    PLoS One; 2010 Dec; 5(12):e15966. PubMed ID: 21209862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid growth cone translocation on laminin is supported by lamellipodial not filopodial structures.
    Kleitman N; Johnson MI
    Cell Motil Cytoskeleton; 1989; 13(4):288-300. PubMed ID: 2776225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubule stabilization specifies initial neuronal polarization.
    Witte H; Neukirchen D; Bradke F
    J Cell Biol; 2008 Feb; 180(3):619-32. PubMed ID: 18268107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The anti-invasive compound motuporamine C is a robust stimulator of neuronal growth cone collapse.
    To KC; Loh KT; Roskelley CD; Andersen RJ; O'Connor TP
    Neuroscience; 2006; 139(4):1263-74. PubMed ID: 16564636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation.
    Dehmelt L; Smart FM; Ozer RS; Halpain S
    J Neurosci; 2003 Oct; 23(29):9479-90. PubMed ID: 14573527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nerve growth factor stimulates axon outgrowth through negative regulation of growth cone actomyosin restraint of microtubule advance.
    Turney SG; Ahmed M; Chandrasekar I; Wysolmerski RB; Goeckeler ZM; Rioux RM; Whitesides GM; Bridgman PC
    Mol Biol Cell; 2016 Feb; 27(3):500-17. PubMed ID: 26631553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of neurite outgrowth mediated by localized phosphorylation of protein translational factor eEF2 in growth cones.
    Iketani M; Iizuka A; Sengoku K; Kurihara Y; Nakamura F; Sasaki Y; Sato Y; Yamane M; Matsushita M; Nairn AC; Takamatsu K; Goshima Y; Takei K
    Dev Neurobiol; 2013 Mar; 73(3):230-46. PubMed ID: 23008267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic microtubules catalyze formation of navigator-TRIO complexes to regulate neurite extension.
    van Haren J; Boudeau J; Schmidt S; Basu S; Liu Z; Lammers D; Demmers J; Benhari J; Grosveld F; Debant A; Galjart N
    Curr Biol; 2014 Aug; 24(15):1778-85. PubMed ID: 25065758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serum-induced neurite retraction in CAD cells--involvement of an ATP-actin retractile system and the lack of microtubule-associated proteins.
    Chesta ME; Carbajal A; Arce CA; Bisig CG
    FEBS J; 2014 Nov; 281(21):4767-78. PubMed ID: 25112570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1,2-dioctanoyl-s,n-glycerol-induced activation of protein kinase C results in striking, but reversible growth cone shape changes and an accumulation of f-actin and serine 41-phosphorylated GAP-43 in the axonal process.
    Rösner H; Vacun G
    Eur J Cell Biol; 1999 Oct; 78(10):698-706. PubMed ID: 10569242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.