These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 17888898)

  • 1. Cryosurgical technique: assessment of the fundamental variables using human prostate cancer model systems.
    Klossner DP; Robilotto AT; Clarke DM; VanBuskirk RG; Baust JM; Gage AA; Baust JG
    Cryobiology; 2007 Dec; 55(3):189-99. PubMed ID: 17888898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemo-cryo combination therapy: an adjunctive model for the treatment of prostate cancer.
    Clarke DM; Baust JM; Van Buskirk RG; Baust JG
    Cryobiology; 2001 Jun; 42(4):274-85. PubMed ID: 11748936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryosurgery of dunning AT-1 rat prostate tumor: thermal, biophysical, and viability response at the cellular and tissue level.
    Bischof JC; Smith D; Pazhayannur PV; Manivel C; Hulbert J; Roberts KP
    Cryobiology; 1997 Feb; 34(1):42-69. PubMed ID: 9028916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of thermal variables on frozen human primary prostatic adenocarcinoma cells.
    Tatsutani K; Rubinsky B; Onik G; Dahiya R
    Urology; 1996 Sep; 48(3):441-7. PubMed ID: 8804499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A parametric study of freezing injury in BPH1CAFTD-2 human prostate tumor cells.
    Geeslin MG; Swanlund DJ; Bischof JC
    Cryo Letters; 2007; 28(3):173-86. PubMed ID: 17898905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryoablative response of prostate cancer cells is influenced by androgen receptor expression.
    Klossner DP; Baust JM; VanBuskirk RG; Gage AA; Baust JG
    BJU Int; 2008 May; 101(10):1310-6. PubMed ID: 18261151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A parametric study of freezing injury in AT-1 rat prostate tumor cells.
    Smith DJ; Fahssi WM; Swanlund DJ; Bischof JC
    Cryobiology; 1999 Aug; 39(1):13-28. PubMed ID: 10458898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryosurgery--a putative approach to molecular-based optimization.
    Baust JG; Gage AA; Clarke D; Baust JM; Van Buskirk R
    Cryobiology; 2004 Apr; 48(2):190-204. PubMed ID: 15094094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryotherapy for the prostate: an in vitro and clinical study of two new developments; advanced cryoneedles and a temperature monitoring system.
    Gowardhan B; Greene D
    BJU Int; 2007 Aug; 100(2):295-302. PubMed ID: 17511766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breast Cancer Cryoablation: Assessment of the Impact of Fundamental Procedural Variables in an In Vitro Human Breast Cancer Model.
    Snyder KK; Van Buskirk RG; Baust JG; Baust JM
    Breast Cancer (Auckl); 2020; 14():1178223420972363. PubMed ID: 33239880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of water transport during freezing in cell suspensions using a differential scanning calorimeter.
    Devireddy RV; Raha D; Bischof JC
    Cryobiology; 1998 Mar; 36(2):124-55. PubMed ID: 9527874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of freezing parameters (freeze cycle and thaw process) on tissue destruction following renal cryoablation.
    Woolley ML; Schulsinger DA; Durand DB; Zeltser IS; Waltzer WC
    J Endourol; 2002 Sep; 16(7):519-22. PubMed ID: 12396446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryoablation of renal cancer: variables involved in freezing-induced cell death.
    Clarke DM; Robilotto AT; Rhee E; VanBuskirk RG; Baust JG; Gage AA; Baust JM
    Technol Cancer Res Treat; 2007 Apr; 6(2):69-79. PubMed ID: 17375969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laparoscopic monitoring of cryosurgical ablation of the prostate.
    Sklar GN; Koschorke GM; Filderman PS; Naslund MJ; Jacobs SC
    Surg Laparosc Endosc; 1995 Oct; 5(5):376-81. PubMed ID: 8845982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of freezing effects on human microvascular-endothelial cells (HMEC).
    Berrada MS; Bischof JC
    Cryo Letters; 2001; 22(6):353-66. PubMed ID: 11788877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing prostate cancer cryotherapy using tumour necrosis factor related apoptosis-inducing ligand (TRAIL) sensitisation in an in vitro cryotherapy model.
    Ismail M; Morgan R; Harrington K; Davies J; Pandha H
    Cryobiology; 2009 Oct; 59(2):207-13. PubMed ID: 19646431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-dependent activation of differential apoptotic pathways during cryoablation in a human prostate cancer model.
    Robilotto AT; Baust JM; Van Buskirk RG; Gage AA; Baust JG
    Prostate Cancer Prostatic Dis; 2013 Mar; 16(1):41-9. PubMed ID: 23229563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative assessment of cryosurgical devices: application to prostatic disease.
    Kaplan SA; Greenberg R; Baust JG
    Urology; 1995 Apr; 45(4):692-9. PubMed ID: 7716857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of viability during freeze-thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis.
    Heng BC; Ye CP; Liu H; Toh WS; Rufaihah AJ; Yang Z; Bay BH; Ge Z; Ouyang HW; Lee EH; Cao T
    J Biomed Sci; 2006 May; 13(3):433-45. PubMed ID: 16374523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An amino acidic adjuvant to augment cryoinjury of MCF-7 breast cancer cells.
    Wang CL; Teo KY; Han B
    Cryobiology; 2008 Aug; 57(1):52-9. PubMed ID: 18588870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.