These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 17889423)
1. Magnesium dependence of the measured equilibrium constants of aminoacyl-tRNA synthetases. Airas RK Biophys Chem; 2007 Dec; 131(1-3):29-35. PubMed ID: 17889423 [TBL] [Abstract][Full Text] [Related]
2. Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli. Airas RK Eur J Biochem; 1996 Aug; 240(1):223-31. PubMed ID: 8797857 [TBL] [Abstract][Full Text] [Related]
3. Aminoacyl thioester chemistry of class II aminoacyl-tRNA synthetases. Jakubowski H Biochemistry; 1997 Sep; 36(37):11077-85. PubMed ID: 9287150 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of beta-ketophosphonate analogs of glutamyl and glutaminyl adenylate, and selective inhibition of the corresponding bacterial aminoacyl-tRNA synthetases. Balg C; Blais SP; Bernier S; Huot JL; Couture M; Lapointe J; Chênevert R Bioorg Med Chem; 2007 Jan; 15(1):295-304. PubMed ID: 17049867 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the kinetic mechanism of arginyl-tRNA synthetase. Airas RK Biochim Biophys Acta; 2006 Feb; 1764(2):307-19. PubMed ID: 16427818 [TBL] [Abstract][Full Text] [Related]
6. Structural characterization of a p-acetylphenylalanyl aminoacyl-tRNA synthetase. Turner JM; Graziano J; Spraggon G; Schultz PG J Am Chem Soc; 2005 Nov; 127(43):14976-7. PubMed ID: 16248607 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon. Blaise M; Olieric V; Sauter C; Lorber B; Roy B; Karmakar S; Banerjee R; Becker HD; Kern D J Mol Biol; 2008 Sep; 381(5):1224-37. PubMed ID: 18602926 [TBL] [Abstract][Full Text] [Related]
8. A novel crystal form of pyrrolysyl-tRNA synthetase reveals the pre- and post-aminoacyl-tRNA synthesis conformational states of the adenylate and aminoacyl moieties and an asparagine residue in the catalytic site. Yanagisawa T; Sumida T; Ishii R; Yokoyama S Acta Crystallogr D Biol Crystallogr; 2013 Jan; 69(Pt 1):5-15. PubMed ID: 23275158 [TBL] [Abstract][Full Text] [Related]
9. Mutation and evolution of the magnesium-binding site of a class II aminoacyl-tRNA synthetase. Ador L; Jaeger S; Geslain R; Martin F; Cavarelli J; Eriani G Biochemistry; 2004 Jun; 43(22):7028-37. PubMed ID: 15170340 [TBL] [Abstract][Full Text] [Related]
10. [High molecular weight forms of aminoacyl-tRNA synthetases in animals. II. High molecular weight aminoacyl-tRNA synthetase complexes in lower animals]. Berbeć H; Paszkowska A Ann Univ Mariae Curie Sklodowska Med; 1993; 48():35-42. PubMed ID: 8534161 [TBL] [Abstract][Full Text] [Related]
11. The 1.2A crystal structure of an E. coli tRNASer)acceptor stem microhelix reveals two magnesium binding sites. Eichert A; Fürste JP; Schreiber A; Perbandt M; Betzel C; Erdmann VA; Förster C Biochem Biophys Res Commun; 2009 Aug; 386(2):368-73. PubMed ID: 19527687 [TBL] [Abstract][Full Text] [Related]
12. Effect of a domain-spanning disulfide on aminoacyl-tRNA synthetase activity. Banerjee P; Warf MB; Alexander R Biochemistry; 2009 Oct; 48(42):10113-9. PubMed ID: 19772352 [TBL] [Abstract][Full Text] [Related]
13. Size polymorphism and the structure of aminoacyl-tRNA synthetases. Schimmel P; Jasin M; Regan L Fed Proc; 1984 Dec; 43(15):2987-90. PubMed ID: 6389183 [TBL] [Abstract][Full Text] [Related]
14. Temperature dependence of the aminoacylation of tRNA by Bacillus stearothermophilus aminoacyl-tRNA synthetases. Johnson L; Söll D Biopolymers; 1971 Nov; 10(11):2209-21. PubMed ID: 4940767 [No Abstract] [Full Text] [Related]
15. Active site nanospace of aminoacyl tRNA synthetase: difference between the class I and class II synthetases. Dutta S; Choudhury K; Banik SD; Nandi N J Nanosci Nanotechnol; 2014 Mar; 14(3):2280-98. PubMed ID: 24745224 [TBL] [Abstract][Full Text] [Related]
16. The twenty aminoacyl-tRNA synthetases from Escherichia coli. General separation procedure, and comparison of the influence of pH and divalent cations on their catalytic activities. Kern D; Lapointe J Biochimie; 1979; 61(11-12):1257-72. PubMed ID: 44203 [TBL] [Abstract][Full Text] [Related]
17. [Stability of phosphodiester tRNA bonds lacking minor nucleosides, in aminoacyl tRNA-synthetase complexes]. Afasozjev RD Mol Biol (Mosk); 1995; 29(1):91-6. PubMed ID: 7723767 [TBL] [Abstract][Full Text] [Related]
18. A minimal TrpRS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases. Pham Y; Li L; Kim A; Erdogan O; Weinreb V; Butterfoss GL; Kuhlman B; Carter CW Mol Cell; 2007 Mar; 25(6):851-62. PubMed ID: 17386262 [TBL] [Abstract][Full Text] [Related]
19. Kinetic analysis of the isoleucyl-tRNA synthetase mechanism: the next reaction cycle can start before the previous one ends. Airas RK FEBS Open Bio; 2018 Feb; 8(2):244-255. PubMed ID: 29435414 [TBL] [Abstract][Full Text] [Related]
20. Using molecular dynamics to map interaction networks in an aminoacyl-tRNA synthetase. Budiman ME; Knaggs MH; Fetrow JS; Alexander RW Proteins; 2007 Aug; 68(3):670-89. PubMed ID: 17510965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]