BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17889536)

  • 1. Conformationally restricted macrocyclic analogues of combretastatins.
    Mateo C; Alvarez R; Pérez-Melero C; Peláez R; Medarde M
    Bioorg Med Chem Lett; 2007 Nov; 17(22):6316-20. PubMed ID: 17889536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p,p-Dihydroxydihydrostilbenophanes related to antimitotic combretastatins. Conformational analysis and its relationship to tubulin inhibition.
    Álvarez R; López V; Mateo C; Medarde M; Peláez R
    J Org Chem; 2014 Aug; 79(15):6840-57. PubMed ID: 24966024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New naphthylcombretastatins. Modifications on the ethylene bridge.
    Sánchez Maya AB; Pérez-Melero C; Salvador N; Peláez R; Caballero E; Medarde M
    Bioorg Med Chem; 2005 Mar; 13(6):2097-107. PubMed ID: 15727863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naphthalene combretastatin analogues: synthesis, cytotoxicity and antitubulin activity.
    Medarde M; Maya AB; Pérez-Melero C
    J Enzyme Inhib Med Chem; 2004 Dec; 19(6):521-40. PubMed ID: 15662956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-activity relationship (5D-QSAR) study of combretastatin-like analogues as inhibitors of tubulin assembly.
    Ducki S; Mackenzie G; Lawrence NJ; Snyder JP
    J Med Chem; 2005 Jan; 48(2):457-65. PubMed ID: 15658859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and biological activity of naphthalene analogues of phenstatins: naphthylphenstatins.
    Alvarez C; Alvarez R; Corchete P; Pérez-Melero C; Peláez R; Medarde M
    Bioorg Med Chem Lett; 2007 Jun; 17(12):3417-20. PubMed ID: 17434303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and conformational analysis of macrocyclic dihydroxystilbenes linked between the para-para positions.
    Mateo C; López V; Medarde M; Peláez R
    Chemistry; 2007; 13(25):7246-56. PubMed ID: 17566133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isocombretastatins A: 1,1-diarylethenes as potent inhibitors of tubulin polymerization and cytotoxic compounds.
    Alvarez R; Alvarez C; Mollinedo F; Sierra BG; Medarde M; Peláez R
    Bioorg Med Chem; 2009 Sep; 17(17):6422-31. PubMed ID: 19647439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New para-para stilbenophanes: synthesis by McMurry coupling, conformational analysis and inhibition of tubulin polymerisation.
    Álvarez R; López V; Mateo C; Medarde M; Peláez R
    Chemistry; 2011 Mar; 17(12):3406-19. PubMed ID: 21344518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and evaluation of double bond substituted combretastatins.
    Hadfield JA; Gaukroger K; Hirst N; Weston AP; Lawrence NJ; McGown AT
    Eur J Med Chem; 2005 Jun; 40(6):529-41. PubMed ID: 15922837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural requirements for the interaction of combretastatins with tubulin: how important is the trimethoxy unit?
    Gaukroger K; Hadfield JA; Lawrence NJ; Nolan S; McGown AT
    Org Biomol Chem; 2003 Sep; 1(17):3033-7. PubMed ID: 14518125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isocombretastatins a versus combretastatins a: the forgotten isoCA-4 isomer as a highly promising cytotoxic and antitubulin agent.
    Messaoudi S; Tréguier B; Hamze A; Provot O; Peyrat JF; De Losada JR; Liu JM; Bignon J; Wdzieczak-Bakala J; Thoret S; Dubois J; Brion JD; Alami M
    J Med Chem; 2009 Jul; 52(14):4538-42. PubMed ID: 19530698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and cytotoxic activity of a new group of heterocyclic analogues of the combretastatins.
    Lipeeva AV; Shults EE; Shakirov MM; Pokrovsky MA; Pokrovsky AG
    Molecules; 2014 Jun; 19(6):7881-900. PubMed ID: 24962392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and biological activity of mustard derivatives of combretastatins.
    Coggiola B; Pagliai F; Allegrone G; Genazzani AA; Tron GC
    Bioorg Med Chem Lett; 2005 Aug; 15(15):3551-4. PubMed ID: 15963722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis, biological evaluation and molecular modeling study of novel macrocyclic bisbibenzyl analogues as antitubulin agents.
    Sun B; Li L; Hu QW; Zheng HB; Tang H; Niu HM; Yuan HQ; Lou HX
    Eur J Med Chem; 2017 Mar; 129():186-208. PubMed ID: 28222318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, anticancer activity, and inhibition of tubulin polymerization by conformationally restricted analogues of lavendustin A.
    Mu F; Hamel E; Lee DJ; Pryor DE; Cushman M
    J Med Chem; 2003 Apr; 46(9):1670-82. PubMed ID: 12699385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, synthesis, biochemical, and biological evaluation of nitrogen-containing trifluoro structural modifications of combretastatin A-4.
    Hall JJ; Sriram M; Strecker TE; Tidmore JK; Jelinek CJ; Kumar GD; Hadimani MB; Pettit GR; Chaplin DJ; Trawick ML; Pinney KG
    Bioorg Med Chem Lett; 2008 Sep; 18(18):5146-9. PubMed ID: 18710804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Combretastatin-2-aminoimidazole Analogues as Potent Tubulin Assembly Inhibitors: Exploration of Unique Pharmacophoric Impact of Bridging Skeleton and Aryl Moiety.
    Chaudhary V; Venghateri JB; Dhaked HP; Bhoyar AS; Guchhait SK; Panda D
    J Med Chem; 2016 Apr; 59(7):3439-51. PubMed ID: 26938120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational and molecular modeling evaluation of the structural basis for tubulin polymerization inhibition by colchicine site agents.
    ter Haar E; Rosenkranz HS; Hamel E; Day BW
    Bioorg Med Chem; 1996 Oct; 4(10):1659-71. PubMed ID: 8931935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Syntheses and bioactivities of macrocyclic paclitaxel bis-lactones.
    Liu C; Schilling JK; Ravindra R; Bane S; Kingston DG
    Bioorg Med Chem; 2004 Dec; 12(23):6147-61. PubMed ID: 15519159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.