These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

680 related articles for article (PubMed ID: 17889595)

  • 1. Studies of surface-enhanced Raman scattering of C60 Langmuir-Blodgett film on a new substrate.
    Xu G; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jun; 70(1):104-8. PubMed ID: 17889595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced Raman scattering system of sample molecules in silver-modified silver film.
    Niu Z; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Mar; 66(3):712-6. PubMed ID: 16876472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of the surface-enhanced Raman scattering (SERS) effect from a new substrate of silver-modified silver electrode.
    Wen R; Fang Y
    J Colloid Interface Sci; 2005 Dec; 292(2):469-75. PubMed ID: 16051260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering of single-walled carbon nanotubes on modified silver electrode.
    Hou X; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Apr; 69(4):1140-5. PubMed ID: 17686652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of p-hydroxybenzoic acid from a new surface-enhanced Raman scattering system.
    Hou X; Fang Y
    J Colloid Interface Sci; 2007 Dec; 316(1):19-24. PubMed ID: 17765911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces.
    Gunawidjaja R; Kharlampieva E; Choi I; Tsukruk VV
    Small; 2009 Nov; 5(21):2460-6. PubMed ID: 19642091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced Raman spectroscopy using silver nanoparticles on a precoated microscope slide.
    Li YS; Cheng J; Chung KT
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):524-7. PubMed ID: 17631042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering.
    Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M
    Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of Langmuir-Blodgett phospholipidic films deposited on surface enhanced Raman scattering active gold nanoparticle monolayers.
    Bernard S; Felidj N; Truong S; Peretti P; Lévi G; Aubard J
    Biopolymers; 2002; 67(4-5):314-8. PubMed ID: 12012456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M
    J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects.
    Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T
    Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates.
    Orendorff CJ; Gearheart L; Jana NR; Murphy CJ
    Phys Chem Chem Phys; 2006 Jan; 8(1):165-70. PubMed ID: 16482257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: maneuverability and uniformity of Raman spectra.
    Wu CY; Huang CC; Jhang JS; Liu AC; Chiang CC; Hsieh ML; Huang PJ; Tuyen le D; Minh le Q; Yang TS; Chau LK; Kan HC; Hsu CC
    Opt Express; 2009 Nov; 17(24):21522-9. PubMed ID: 19997393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells.
    Kneipp K; Kneipp H; Kneipp J
    Acc Chem Res; 2006 Jul; 39(7):443-50. PubMed ID: 16846208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net-like assembly of Au nanoparticles as a highly active substrate for surface-enhanced Raman and infrared spectroscopy.
    Luo Z; Yang W; Peng A; Ma Y; Fu H; Yao J
    J Phys Chem A; 2009 Mar; 113(11):2467-72. PubMed ID: 19216546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A controlled and reproducible pathway to dye-tagged, encapsulated silver nanoparticles as substrates for SERS multiplexing.
    Brown LO; Doorn SK
    Langmuir; 2008 Mar; 24(6):2277-80. PubMed ID: 18278969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering.
    Aroca RF; Goulet PJ; dos Santos DS; Alvarez-Puebla RA; Oliveira ON
    Anal Chem; 2005 Jan; 77(2):378-82. PubMed ID: 15649031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.