BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17889672)

  • 1. Positive feedback regulates switching of phosphate transporters in S. cerevisiae.
    Wykoff DD; Rizvi AH; Raser JM; Margolin B; O'Shea EK
    Mol Cell; 2007 Sep; 27(6):1005-13. PubMed ID: 17889672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake of selenite by Saccharomyces cerevisiae involves the high and low affinity orthophosphate transporters.
    Lazard M; Blanquet S; Fisicaro P; Labarraque G; Plateau P
    J Biol Chem; 2010 Oct; 285(42):32029-37. PubMed ID: 20688911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity.
    Hürlimann HC; Pinson B; Stadler-Waibel M; Zeeman SC; Freimoser FM
    EMBO Rep; 2009 Sep; 10(9):1003-8. PubMed ID: 19590579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of 14-3-3 proteins in Saccharomyces cerevisiae results in cell-to-cell heterogeneity in the expression of Pho4-regulated genes SPL2 and PHO84.
    Teunissen JHM; Crooijmans ME; Teunisse PPP; van Heusden GPH
    BMC Genomics; 2017 Sep; 18(1):701. PubMed ID: 28877665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae.
    Ghillebert R; Swinnen E; De Snijder P; Smets B; Winderickx J
    Biochem J; 2011 Mar; 434(2):243-51. PubMed ID: 21143198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The yeast Aft2 transcription factor determines selenite toxicity by controlling the low affinity phosphate transport system.
    Pérez-Sampietro M; Serra-Cardona A; Canadell D; Casas C; Ariño J; Herrero E
    Sci Rep; 2016 Sep; 6():32836. PubMed ID: 27618952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the protein kinase A alters the degradation of the high-affinity phosphate transporter Pho84 in Saccharomyces cerevisiae.
    Mouillon JM; Persson BL
    Curr Genet; 2005 Oct; 48(4):226-34. PubMed ID: 16160831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The competitive advantage of a dual-transporter system.
    Levy S; Kafri M; Carmi M; Barkai N
    Science; 2011 Dec; 334(6061):1408-12. PubMed ID: 22158820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter.
    Lundh F; Mouillon JM; Samyn D; Stadler K; Popova Y; Lagerstedt JO; Thevelein JM; Persson BL
    Biochemistry; 2009 Jun; 48(21):4497-505. PubMed ID: 19348508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNAseq analysis of mutants in coding and non-coding transcription of phosphate genes in the yeast Saccharomyces cerevisiae.
    van Heusden GPH
    Genomics; 2023 Sep; 115(5):110672. PubMed ID: 37380138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pho91 Is a vacuolar phosphate transporter that regulates phosphate and polyphosphate metabolism in Saccharomyces cerevisiae.
    Hürlimann HC; Stadler-Waibel M; Werner TP; Freimoser FM
    Mol Biol Cell; 2007 Nov; 18(11):4438-45. PubMed ID: 17804816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic Phosphate and Sulfate Transport in S. cerevisiae.
    Samyn DR; Persson BL
    Adv Exp Med Biol; 2016; 892():253-269. PubMed ID: 26721277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Budding yeast escape commitment to the phosphate starvation program using gene expression noise.
    Vardi N; Levy S; Assaf M; Carmi M; Barkai N
    Curr Biol; 2013 Oct; 23(20):2051-7. PubMed ID: 24094854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of histone deacetylase gene RPD3 accelerates PHO5 activation kinetics through inappropriate Pho84p recycling.
    Wongwisansri S; Laybourn PJ
    Eukaryot Cell; 2005 Aug; 4(8):1387-95. PubMed ID: 16087743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-to-cell heterogeneity of phosphate gene expression in yeast is controlled by alternative transcription, 14-3-3 and Spl2.
    Crooijmans ME; Delzenne TO; Hensen T; Darehei M; de Winde JH; van Heusden GPH
    Biochim Biophys Acta Gene Regul Mech; 2021; 1864(6-7):194714. PubMed ID: 33971368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis.
    Jensen LT; Ajua-Alemanji M; Culotta VC
    J Biol Chem; 2003 Oct; 278(43):42036-40. PubMed ID: 12923174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae.
    Mouillon JM; Persson BL
    FEMS Yeast Res; 2006 Mar; 6(2):171-6. PubMed ID: 16487340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The conservation of phosphate-binding residues among PHT1 transporters suggests that distinct transport affinities are unlikely to result from differences in the phosphate-binding site.
    Ceasar SA; Baker A; Muench SP; Ignacimuthu S; Baldwin SA
    Biochem Soc Trans; 2016 Oct; 44(5):1541-1548. PubMed ID: 27911737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation of PHO pathway in ascomycetes and the role of Pho84.
    Tomar P; Sinha H
    J Biosci; 2014 Jun; 39(3):525-36. PubMed ID: 24845516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae.
    Auesukaree C; Homma T; Tochio H; Shirakawa M; Kaneko Y; Harashima S
    J Biol Chem; 2004 Apr; 279(17):17289-94. PubMed ID: 14966138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.