These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 1789006)

  • 1. The cysteine transport system of Saccharomyces cerevisiae.
    Ono B; Naito K
    Yeast; 1991 Nov; 7(8):849-55. PubMed ID: 1789006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homocysteine- and cysteine-mediated growth defect is not associated with induction of oxidative stress response genes in yeast.
    Kumar A; John L; Alam MM; Gupta A; Sharma G; Pillai B; Sengupta S
    Biochem J; 2006 May; 396(1):61-9. PubMed ID: 16433631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of L-[14C]cystine and L-[14C]cysteine by subtypes of high affinity glutamate transporters over-expressed in HEK cells.
    Hayes D; Wiessner M; Rauen T; McBean GJ
    Neurochem Int; 2005 Jun; 46(8):585-94. PubMed ID: 15863236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of cystathionine gamma-lyase in Saccharomyces cerevisiae.
    Ono B; Naito K; Shirahige Y; Yamamoto M
    Yeast; 1991 Nov; 7(8):843-8. PubMed ID: 1789005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of cystine and cysteine and cell growth in cultured human diploid fibroblasts: effect of glutamate and homocysteate.
    Bannai S; Ishii T
    J Cell Physiol; 1982 Aug; 112(2):265-72. PubMed ID: 6126484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine.
    Ishii T; Sugita Y; Bannai S
    J Cell Physiol; 1987 Nov; 133(2):330-6. PubMed ID: 3680392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel mechanism regulates H(2) S and SO(2) production in Saccharomyces cerevisiae.
    Yoshida S; Imoto J; Minato T; Oouchi R; Kamada Y; Tomita M; Soga T; Yoshimoto H
    Yeast; 2011 Feb; 28(2):109-21. PubMed ID: 20936605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione transport systems of the budding yeast Saccharomyces cerevisiae.
    Miyake T; Hazu T; Yoshida S; Kanayama M; Tomochika K; Shinoda S; Ono B
    Biosci Biotechnol Biochem; 1998 Oct; 62(10):1858-64. PubMed ID: 9836420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-affinity uptake system for branched-chain amino acids in Saccharomyces cerevisiae.
    Tullin S; Gjermansen C; Kielland-Brandt MC
    Yeast; 1991 Dec; 7(9):933-41. PubMed ID: 1803818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of branched-chain, and sulfur-containing amino acid metabolism by glutathione during ultradian metabolic oscillation of Saccharomyces cerevisiae.
    Sohn HY; Kum EJ; Kwon GS; Jin I; Kuriyama H
    J Microbiol; 2005 Aug; 43(4):375-80. PubMed ID: 16145554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of Bcl-2 increases intracellular glutathione by inhibiting methionine-dependent GSH efflux.
    Meredith MJ; Cusick CL; Soltaninassab S; Sekhar KS; Lu S; Freeman ML
    Biochem Biophys Res Commun; 1998 Jul; 248(3):458-63. PubMed ID: 9703946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Toxic effect of cysteine on cells of Saccharomyces cerevisiae growing on media of various compositions].
    Damberg BE; Blumberg IaE
    Mikrobiologiia; 1983; 52(1):68-72. PubMed ID: 6341788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation.
    Ono BI; Hazu T; Yoshida S; Kawato T; Shinoda S; Brzvwczy J; Paszewski A
    Yeast; 1999 Sep; 15(13):1365-75. PubMed ID: 10509018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-leucine transport systems in Saccharomyces cerevisiae participation of GAP1, S1 and S2 transport systems.
    Kotliar N; Stella CA; Ramos EH; Mattoon JR
    Cell Mol Biol (Noisy-le-grand); 1994 Sep; 40(6):833-42. PubMed ID: 7812191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and efflux of methylmercury in vitro: comparison of transport mechanisms in C6, B35 and RBE4 cells.
    Heggland I; Kaur P; Syversen T
    Toxicol In Vitro; 2009 Sep; 23(6):1020-7. PubMed ID: 19540910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of cadmium chloride toxicity by sulphur amino acids in hepatoma cells.
    Fotakis G; Timbrell JA
    Toxicol In Vitro; 2006 Aug; 20(5):641-8. PubMed ID: 16442773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic tobacco plants overexpressing the Met25 gene of Saccharomyces cerevisiae exhibit enhanced levels of cysteine and glutathione and increased tolerance to oxidative stress.
    Matityahu I; Kachan L; Bar Ilan I; Amir R
    Amino Acids; 2006 Mar; 30(2):185-94. PubMed ID: 16193226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two pathways for cysteine biosynthesis in Leishmania major.
    Williams RA; Westrop GD; Coombs GH
    Biochem J; 2009 May; 420(3):451-62. PubMed ID: 19296828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylmercury-thiol uptake into cultured brain capillary endothelial cells on amino acid system L.
    Mokrzan EM; Kerper LE; Ballatori N; Clarkson TW
    J Pharmacol Exp Ther; 1995 Mar; 272(3):1277-84. PubMed ID: 7891344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low de novo glutathione synthesis from circulating sulfur amino acids in the lens epithelium.
    Mackic JB; Kannan R; Kaplowitz N; Zlokovic BV
    Exp Eye Res; 1997 Apr; 64(4):615-26. PubMed ID: 9227280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.