BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17890304)

  • 1. L-Rhamnose transport is sugar kinase (RhaK) dependent in Rhizobium leguminosarum bv. trifolii.
    Richardson JS; Oresnik IJ
    J Bacteriol; 2007 Dec; 189(23):8437-46. PubMed ID: 17890304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Sugar Kinase That Is Necessary for the Catabolism of Rhamnose in Rhizobium leguminosarum Directly Interacts with the ABC Transporter Necessary for Rhamnose Transport.
    Rivers DM; Oresnik IJ
    J Bacteriol; 2015 Dec; 197(24):3812-21. PubMed ID: 26416834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate kinase (RhaK)-dependent ABC transport of rhamnose in Rhizobium leguminosarum demonstrates genetic separation of kinase and transport activities.
    Rivers D; Oresnik IJ
    J Bacteriol; 2013 Aug; 195(15):3424-32. PubMed ID: 23708135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genetic locus necessary for rhamnose uptake and catabolism in Rhizobium leguminosarum bv. trifolii.
    Richardson JS; Hynes MF; Oresnik IJ
    J Bacteriol; 2004 Dec; 186(24):8433-42. PubMed ID: 15576793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation.
    Ding H; Yip CB; Geddes BA; Oresnik IJ; Hynes MF
    Microbiology (Reading); 2012 May; 158(Pt 5):1369-1378. PubMed ID: 22343359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RhaU of Rhizobium leguminosarum is a rhamnose mutarotase.
    Richardson JS; Carpena X; Switala J; Perez-Luque R; Donald LJ; Loewen PC; Oresnik IJ
    J Bacteriol; 2008 Apr; 190(8):2903-10. PubMed ID: 18156270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a {gamma}-aminobutyric acid transport system of Rhizobium leguminosarum bv. viciae 3841.
    White JP; Prell J; Ramachandran VK; Poole PS
    J Bacteriol; 2009 Mar; 191(5):1547-55. PubMed ID: 19103927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inability to Catabolize Rhamnose by
    Rivers DMR; Kim DD; Oresnik IJ
    Microorganisms; 2022 Mar; 10(4):. PubMed ID: 35456783
    [No Abstract]   [Full Text] [Related]  

  • 9. The Rhizobium leguminosarum bv. trifolii RosR: transcriptional regulator involved in exopolysaccharide production.
    Janczarek M; Skorupska A
    Mol Plant Microbe Interact; 2007 Jul; 20(7):867-81. PubMed ID: 17601173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the quaternary amine transporters of Rhizobium leguminosarum bv. viciae 3841.
    Fox MA; Karunakaran R; Leonard ME; Mouhsine B; Williams A; East AK; Downie JA; Poole PS
    FEMS Microbiol Lett; 2008 Oct; 287(2):212-20. PubMed ID: 18721149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of genes in Rhizobium leguminosarum bv. trifolii whose products are homologues to a family of ATP-binding proteins.
    Król J; Skorupska A
    Microbiology (Reading); 1997 Apr; 143 ( Pt 4)():1389-1394. PubMed ID: 9141701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The production of species-specific highly unsaturated fatty acyl-containing LCOs from Rhizobium leguminosarum bv. trifolii is stringently regulated by nodD and involves the nodRL genes.
    Schlaman HR; Olsthoorn MM; Harteveld M; Dörner L; Djordjevic MA; Thomas-Oates JE; Spaink HP
    Mol Plant Microbe Interact; 2006 Mar; 19(3):215-26. PubMed ID: 16570652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple copies of rosR and pssA genes enhance exopolysaccharide production, symbiotic competitiveness and clover nodulation in Rhizobium leguminosarum bv. trifolii.
    Janczarek M; Jaroszuk-Sciseł J; Skorupska A
    Antonie Van Leeuwenhoek; 2009 Nov; 96(4):471-86. PubMed ID: 19588265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae.
    Yost CK; Rath AM; Noel TC; Hynes MF
    Microbiology (Reading); 2006 Jul; 152(Pt 7):2061-2074. PubMed ID: 16804181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome profiling of a Rhizobium leguminosarum bv. trifolii rosR mutant reveals the role of the transcriptional regulator RosR in motility, synthesis of cell-surface components, and other cellular processes.
    Rachwał K; Matczyńska E; Janczarek M
    BMC Genomics; 2015 Dec; 16():1111. PubMed ID: 26715155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhizobium leguminosarum bv. trifolii PssP protein is required for exopolysaccharide biosynthesis and polymerization.
    Mazur A; Król JE; Wielbo J; Urbanik-Sypniewska T; Skorupska A
    Mol Plant Microbe Interact; 2002 Apr; 15(4):388-97. PubMed ID: 12026178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The PTS(Ntr) system globally regulates ATP-dependent transporters in Rhizobium leguminosarum.
    Prell J; Mulley G; Haufe F; White JP; Williams A; Karunakaran R; Downie JA; Poole PS
    Mol Microbiol; 2012 Apr; 84(1):117-29. PubMed ID: 22340847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness.
    Fry J; Wood M; Poole PS
    Mol Plant Microbe Interact; 2001 Aug; 14(8):1016-25. PubMed ID: 11497462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic Studies Reveal that the
    Lipa P; Vinardell JM; Janczarek M
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31197117
    [No Abstract]   [Full Text] [Related]  

  • 20. Exopolysaccharide synthesis in Rhizobium leguminosarum bv. trifolii is related to various metabolic pathways.
    Janczarek M; Skorupska A
    Res Microbiol; 2003; 154(6):433-42. PubMed ID: 12892850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.