These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 17890314)
21. Expanding the Scope of Single- and Double-Noncanonical Amino Acid Mutagenesis in Mammalian Cells Using Orthogonal Polyspecific Leucyl-tRNA Synthetases. Zheng Y; Mukherjee R; Chin MA; Igo P; Gilgenast MJ; Chatterjee A Biochemistry; 2018 Jan; 57(4):441-445. PubMed ID: 29106828 [TBL] [Abstract][Full Text] [Related]
22. Role of leucyl-tRNA synthetase in regulation of branched-chain amino-acid transport. Quay SC; Kline EL; Oxender DL Proc Natl Acad Sci U S A; 1975 Oct; 72(10):3921-4. PubMed ID: 1105569 [TBL] [Abstract][Full Text] [Related]
23. The physiological target for LeuRS translational quality control is norvaline. Cvetesic N; Palencia A; Halasz I; Cusack S; Gruic-Sovulj I EMBO J; 2014 Aug; 33(15):1639-53. PubMed ID: 24935946 [TBL] [Abstract][Full Text] [Related]
24. A molecular dynamics simulation study of amino acid selectivity of LeuRS editing domain from Thermus thermophilus. Rayevsky A; Sharifi M; Tukalo M J Mol Graph Model; 2018 Sep; 84():74-81. PubMed ID: 29935476 [TBL] [Abstract][Full Text] [Related]
25. Membrane association of leucyl-tRNA synthetase during leucine starvation in Escherichia coli. Williamson RM Biochem Biophys Res Commun; 1993 Feb; 190(3):794-800. PubMed ID: 8439330 [TBL] [Abstract][Full Text] [Related]
26. Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Palencia A; Crépin T; Vu MT; Lincecum TL; Martinis SA; Cusack S Nat Struct Mol Biol; 2012 Jun; 19(7):677-84. PubMed ID: 22683997 [TBL] [Abstract][Full Text] [Related]
27. Rational design to block amino acid editing of a tRNA synthetase. Mursinna RS; Martinis SA J Am Chem Soc; 2002 Jun; 124(25):7286-7. PubMed ID: 12071734 [TBL] [Abstract][Full Text] [Related]
28. Inhibition of leucyl-tRNA synthetase in Escherichia coli by the cytostatic 5,8-dioxo-6-amino-7-chloroquinoline. Ogilvie A; Wiebauer K; Spitzbarth P; Kersten W Biochim Biophys Acta; 1975 Oct; 407(3):357-64. PubMed ID: 95889 [TBL] [Abstract][Full Text] [Related]
29. A naturally occurring nonapeptide functionally compensates for the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity. Tan M; Yan W; Liu RJ; Wang M; Chen X; Zhou XL; Wang ED Biochem J; 2012 Apr; 443(2):477-84. PubMed ID: 22292813 [TBL] [Abstract][Full Text] [Related]
30. [An insertion mutant of LeuRS with 116 amino acid residues has full activity]. Huang Y; Ling C; Li T; Tong GL; Wang ED Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Mar; 35(3):225-9. PubMed ID: 12621546 [TBL] [Abstract][Full Text] [Related]
31. A promiscuous aminoacyl-tRNA synthetase that incorporates cysteine, methionine, and alanine homologs into proteins. Brustad E; Bushey ML; Brock A; Chittuluru J; Schultz PG Bioorg Med Chem Lett; 2008 Nov; 18(22):6004-6. PubMed ID: 18845434 [TBL] [Abstract][Full Text] [Related]
32. Two tyrosine residues outside the editing active site in Giardia lamblia leucyl-tRNA synthetase are essential for the post-transfer editing. Zhou XL; Wang ED Biochem Biophys Res Commun; 2009 Aug; 386(3):510-5. PubMed ID: 19540202 [TBL] [Abstract][Full Text] [Related]
33. Mutational unmasking of a tRNA-dependent pathway for preventing genetic code ambiguity. Williams AM; Martinis SA Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3586-91. PubMed ID: 16505383 [TBL] [Abstract][Full Text] [Related]
34. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Bonfils G; Jaquenoud M; Bontron S; Ostrowicz C; Ungermann C; De Virgilio C Mol Cell; 2012 Apr; 46(1):105-10. PubMed ID: 22424774 [TBL] [Abstract][Full Text] [Related]
35. Identification of the nucleophilic factors and the productive complex for the editing reaction by leucyl-tRNA synthetase. Hagiwara Y; Nureki O; Tateno M FEBS Lett; 2009 Jun; 583(12):1901-8. PubMed ID: 19463822 [TBL] [Abstract][Full Text] [Related]
36. A unique insertion in the CP1 domain of Giardia lamblia leucyl-tRNA synthetase. Zhou XL; Yao P; Ruan LL; Zhu B; Luo J; Qu LH; Wang ED Biochemistry; 2009 Feb; 48(6):1340-7. PubMed ID: 19170608 [TBL] [Abstract][Full Text] [Related]
37. Acetylation of lysine ϵ-amino groups regulates aminoacyl-tRNA synthetase activity in Ye Q; Ji QQ; Yan W; Yang F; Wang ED J Biol Chem; 2017 Jun; 292(25):10709-10722. PubMed ID: 28455447 [TBL] [Abstract][Full Text] [Related]
38. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation. Fukunaga R; Yokoyama S J Mol Biol; 2005 Feb; 346(1):57-71. PubMed ID: 15663927 [TBL] [Abstract][Full Text] [Related]
39. The C-terminal domain of the archaeal leucyl-tRNA synthetase prevents misediting of isoleucyl-tRNA(Ile). Fukunaga R; Yokoyama S Biochemistry; 2007 May; 46(17):4985-96. PubMed ID: 17407269 [TBL] [Abstract][Full Text] [Related]
40. The CP2 domain of leucyl-tRNA synthetase is crucial for amino acid activation and post-transfer editing. Zhou XL; Zhu B; Wang ED J Biol Chem; 2008 Dec; 283(52):36608-16. PubMed ID: 18955487 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]