These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 17890380)

  • 21. Effects of phosphate and ADP on shortening velocity during maximal and submaximal calcium activation of the thin filament in skeletal muscle fibers.
    Metzger JM
    Biophys J; 1996 Jan; 70(1):409-17. PubMed ID: 8770217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relaxation kinetics following sudden Ca(2+) reduction in single myofibrils from skeletal muscle.
    Tesi C; Piroddi N; Colomo F; Poggesi C
    Biophys J; 2002 Oct; 83(4):2142-51. PubMed ID: 12324431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multisegmental cross-bridge kinetics model of the myofibril.
    Stoecker U; Telley IA; Stüssi E; Denoth J
    J Theor Biol; 2009 Aug; 259(4):714-26. PubMed ID: 19348814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of inorganic phosphate on force generation in single myofibrils from rabbit skeletal muscle.
    Tesi C; Colomo F; Nencini S; Piroddi N; Poggesi C
    Biophys J; 2000 Jun; 78(6):3081-92. PubMed ID: 10827985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of Ca2+ and MgADP on force development during and after muscle length changes.
    Minozzo FC; Rassier DE
    PLoS One; 2013; 8(7):e68866. PubMed ID: 23874795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of tropomyosin isoform composition on fast skeletal muscle thin filament regulation and force development.
    Scellini B; Piroddi N; Flint GV; Regnier M; Poggesi C; Tesi C
    J Muscle Res Cell Motil; 2015 Feb; 36(1):11-23. PubMed ID: 25380572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Depressed contractile performance and reduced fatigue resistance in single skinned fibers of soleus muscle after long-term disuse in rats.
    Udaka J; Terui T; Ohtsuki I; Marumo K; Ishiwata S; Kurihara S; Fukuda N
    J Appl Physiol (1985); 2011 Oct; 111(4):1080-7. PubMed ID: 21719722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Length-dependence of cross-bridge mediated activation of the cardiac thin filament.
    Smith SH; Fuchs F
    J Mol Cell Cardiol; 2000 May; 32(5):831-8. PubMed ID: 10775487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stretch-induced force enhancement and stability of skeletal muscle myofibrils.
    Rassier DE; Herzog W; Pollack GH
    Adv Exp Med Biol; 2003; 538():501-15; discussion 515. PubMed ID: 15098694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding.
    Stehle R; Brenner B
    Biophys J; 2000 Mar; 78(3):1458-73. PubMed ID: 10692331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cooperative cross-bridge activation of thin filaments contributes to the Frank-Starling mechanism in cardiac muscle.
    Smith L; Tainter C; Regnier M; Martyn DA
    Biophys J; 2009 May; 96(9):3692-702. PubMed ID: 19413974
    [TBL] [Abstract][Full Text] [Related]  

  • 32. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Force depression in single myofibrils.
    Joumaa V; Herzog W
    J Appl Physiol (1985); 2010 Feb; 108(2):356-62. PubMed ID: 20007852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spontaneous oscillatory contraction of sarcomeres in skeletal myofibrils.
    Okamura N; Ishiwata S
    J Muscle Res Cell Motil; 1988 Apr; 9(2):111-9. PubMed ID: 3138284
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radial stability of the actomyosin filament lattice in isolated skeletal myofibrils studied using atomic force microscopy.
    Miyashiro D; Wakayama J; Akiyama N; Kunioka Y; Yamada T
    J Physiol Sci; 2013 Jul; 63(4):299-310. PubMed ID: 23690090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers.
    Zhao Y; Kawai M
    Biophys J; 1994 Oct; 67(4):1655-68. PubMed ID: 7819497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inter-sarcomere coordination in muscle revealed through individual sarcomere response to quick stretch.
    Shimamoto Y; Suzuki M; Mikhailenko SV; Yasuda K; Ishiwata S
    Proc Natl Acad Sci U S A; 2009 Jul; 106(29):11954-9. PubMed ID: 19515816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cinematographic studies on the A-band length changes during Ca-activated contraction in horseshoe crab muscle myofibrils.
    Sugi H; Gomi S
    Adv Exp Med Biol; 1984; 170():107-18. PubMed ID: 6741690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron microscopic visualization of the cross-bridge movement coupled with ATP hydrolysis in muscle thick filaments in aqueous solution, reminiscences and future prospects.
    Sugi H
    Adv Exp Med Biol; 2010; 682():77-103. PubMed ID: 20824521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Does cross-bridge activation determine the time course of myofibrillar relaxation?
    Stehle R; Krüger M; Pfitzer G
    Adv Exp Med Biol; 2003; 538():469-79; discussion 479. PubMed ID: 15098692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.