These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 17890434)
1. Skeletal muscle VEGF gradients in peripheral arterial disease: simulations of rest and exercise. Ji JW; Mac Gabhann F; Popel AS Am J Physiol Heart Circ Physiol; 2007 Dec; 293(6):H3740-9. PubMed ID: 17890434 [TBL] [Abstract][Full Text] [Related]
2. VEGF and soluble VEGF receptor-1 (sFlt-1) distributions in peripheral arterial disease: an in silico model. Wu FT; Stefanini MO; Mac Gabhann F; Kontos CD; Annex BH; Popel AS Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H2174-91. PubMed ID: 20382861 [TBL] [Abstract][Full Text] [Related]
3. VEGF gradients, receptor activation, and sprout guidance in resting and exercising skeletal muscle. Mac Gabhann F; Ji JW; Popel AS J Appl Physiol (1985); 2007 Feb; 102(2):722-34. PubMed ID: 17038488 [TBL] [Abstract][Full Text] [Related]
4. Multi-scale computational models of pro-angiogenic treatments in peripheral arterial disease. Mac Gabhann F; Ji JW; Popel AS Ann Biomed Eng; 2007 Jun; 35(6):982-94. PubMed ID: 17436110 [TBL] [Abstract][Full Text] [Related]
5. Computational model of vascular endothelial growth factor spatial distribution in muscle and pro-angiogenic cell therapy. Mac Gabhann F; Ji JW; Popel AS PLoS Comput Biol; 2006 Sep; 2(9):e127. PubMed ID: 17002494 [TBL] [Abstract][Full Text] [Related]
7. VEGF receptor antagonism blocks arteriogenesis, but only partially inhibits angiogenesis, in skeletal muscle of exercise-trained rats. Lloyd PG; Prior BM; Li H; Yang HT; Terjung RL Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H759-68. PubMed ID: 15471974 [TBL] [Abstract][Full Text] [Related]
8. Vascular endothelial growth factor-A specifies formation of native collaterals and regulates collateral growth in ischemia. Clayton JA; Chalothorn D; Faber JE Circ Res; 2008 Oct; 103(9):1027-36. PubMed ID: 18802023 [TBL] [Abstract][Full Text] [Related]
9. Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle. Mac Gabhann F; Popel AS Am J Physiol Heart Circ Physiol; 2007 Jan; 292(1):H459-74. PubMed ID: 16980341 [TBL] [Abstract][Full Text] [Related]
11. Vascular endothelial growth factor mRNA and protein do not change in parallel during non-inflammatory skeletal muscle ischaemia in rat. Milkiewicz M; Hudlicka O; Shiner R; Egginton S; Brown MD J Physiol; 2006 Dec; 577(Pt 2):671-8. PubMed ID: 16990404 [TBL] [Abstract][Full Text] [Related]
12. Skeletal muscle capillarity and angiogenic mRNA levels after exercise training in normoxia and chronic hypoxia. Olfert IM; Breen EC; Mathieu-Costello O; Wagner PD J Appl Physiol (1985); 2001 Sep; 91(3):1176-84. PubMed ID: 11509513 [TBL] [Abstract][Full Text] [Related]
13. Exercise-induced angiogenesis-related growth and transcription factors in skeletal muscle, and their modification in muscle pathology. Gustafsson T; Kraus WE Front Biosci; 2001 Jan; 6():D75-89. PubMed ID: 11145922 [TBL] [Abstract][Full Text] [Related]
14. Platelet-derived growth factor C promotes revascularization in ischemic limbs of diabetic mice. Moriya J; Wu X; Zavala-Solorio J; Ross J; Liang XH; Ferrara N J Vasc Surg; 2014 May; 59(5):1402-9.e1-4. PubMed ID: 23856609 [TBL] [Abstract][Full Text] [Related]
15. A novel association of neuropilin-1 and MUC1 in pancreatic ductal adenocarcinoma: role in induction of VEGF signaling and angiogenesis. Zhou R; Curry JM; Roy LD; Grover P; Haider J; Moore LJ; Wu ST; Kamesh A; Yazdanifar M; Ahrens WA; Leung T; Mukherjee P Oncogene; 2016 Oct; 35(43):5608-5618. PubMed ID: 26804176 [TBL] [Abstract][Full Text] [Related]
16. A multiscale computational model predicts distribution of anti-angiogenic isoform VEGF Chu LH; Ganta VC; Choi MH; Chen G; Finley SD; Annex BH; Popel AS Sci Rep; 2016 Nov; 6():37030. PubMed ID: 27853189 [TBL] [Abstract][Full Text] [Related]