These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17890650)

  • 1. Dihydroxyacetone-induced death is accompanied by advanced glycation endproduct formation in selected proteins of Saccharomyces cerevisiae and Caenorhabditis elegans.
    Molin M; Pilon M; Blomberg A
    Proteomics; 2007 Oct; 7(20):3764-74. PubMed ID: 17890650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced formation of advanced glycation endproducts via interactions between glutathione peroxidase 3 and dihydroxyacetone kinase 1.
    Lee H; Chi SW; Lee PY; Kang S; Cho S; Lee CK; Bae KH; Park BC; Park SG
    Biochem Biophys Res Commun; 2009 Nov; 389(1):177-80. PubMed ID: 19715675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein glycation in Saccharomyces cerevisiae. Argpyrimidine formation and methylglyoxal catabolism.
    Gomes RA; Sousa Silva M; Vicente Miranda H; Ferreira AE; Cordeiro CA; Freire AP
    FEBS J; 2005 Sep; 272(17):4521-31. PubMed ID: 16128820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dihydroxyacetone detoxification in Saccharomyces cerevisiae involves formaldehyde dissimilation.
    Molin M; Blomberg A
    Mol Microbiol; 2006 May; 60(4):925-38. PubMed ID: 16677304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of multicellularity in Metazoa: comparative analysis of the subcellular localization of proteins in Saccharomyces, Drosophila and Caenorhabditis.
    Hazkani-Covo E; Levanon EY; Rotman G; Graur D; Novik A
    Cell Biol Int; 2004; 28(3):171-8. PubMed ID: 14984742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Saccharomyces cerevisiae and Caenorhabditis elegans as model organisms to study the effect of cocoa polyphenols in the resistance to oxidative stress.
    Martorell P; Forment JV; de Llanos R; Montón F; Llopis S; González N; Genovés S; Cienfuegos E; Monzó H; Ramón D
    J Agric Food Chem; 2011 Mar; 59(5):2077-85. PubMed ID: 21288028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein interaction networks of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster: large-scale organization and robustness.
    Li D; Li J; Ouyang S; Wang J; Wu S; Wan P; Zhu Y; Xu X; He F
    Proteomics; 2006 Jan; 6(2):456-61. PubMed ID: 16317777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary plasticity of genetic interaction networks.
    Tischler J; Lehner B; Fraser AG
    Nat Genet; 2008 Apr; 40(4):390-1. PubMed ID: 18362882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The PCome of Caenorhabditis elegans as a prototypic model system for parasitic nematodes: identification of phosphorylcholine-substituted proteins.
    Grabitzki J; Ahrend M; Schachter H; Geyer R; Lochnit G
    Mol Biochem Parasitol; 2008 Oct; 161(2):101-11. PubMed ID: 18652849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein glycation and methylglyoxal metabolism in yeast: finding peptide needles in protein haystacks.
    Gomes RA; Vicente Miranda H; Sousa Silva M; Graça G; Coelho AV; do Nascimento Ferreira AE; Cordeiro C; Freire AP
    FEMS Yeast Res; 2008 Feb; 8(1):174-81. PubMed ID: 18070066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein glycosylation lessons from Caenorhabditis elegans.
    Schachter H
    Curr Opin Struct Biol; 2004 Oct; 14(5):607-16. PubMed ID: 15465323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity of dihydroxyacetone is exerted through the formation of methylglyoxal in
    Nomura W; Aoki M; Inoue Y
    Biochem J; 2018 Aug; 475(16):2637-2652. PubMed ID: 30049894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophagy is required for necrotic cell death in Caenorhabditis elegans.
    Samara C; Syntichaki P; Tavernarakis N
    Cell Death Differ; 2008 Jan; 15(1):105-12. PubMed ID: 17901876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-developmentally programmed cell death in Caenorhabditis elegans.
    Kourtis N; Tavernarakis N
    Semin Cancer Biol; 2007 Apr; 17(2):122-33. PubMed ID: 17196824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein glycation in vivo: functional and structural effects on yeast enolase.
    Gomes RA; Oliveira LM; Silva M; Ascenso C; Quintas A; Costa G; Coelho AV; Sousa Silva M; Ferreira AE; Ponces Freire A; Cordeiro C
    Biochem J; 2008 Dec; 416(3):317-26. PubMed ID: 18651835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caenorhabditis elegans: a versatile platform for drug discovery.
    Artal-Sanz M; de Jong L; Tavernarakis N
    Biotechnol J; 2006 Dec; 1(12):1405-18. PubMed ID: 17109493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lats kinase is involved in the intestinal apical membrane integrity in the nematode Caenorhabditis elegans.
    Kang J; Shin D; Yu JR; Lee J
    Development; 2009 Aug; 136(16):2705-15. PubMed ID: 19605499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophagy in Caenorhabditis elegans.
    Sigmond T; Barna J; Tóth ML; Takács-Vellai K; Pásti G; Kovács AL; Vellai T
    Methods Enzymol; 2008; 451():521-40. PubMed ID: 19185738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of RNAi technology and fluorescent protein markers to study membrane traffic in Caenorhabditis elegans.
    Poteryaev D; Spang A
    Methods Mol Biol; 2008; 440():331-47. PubMed ID: 18369957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DIC-1 over-expression enhances respiratory activity in Caenorhabditis elegans by promoting mitochondrial cristae formation.
    Lee TH; Mun JY; Han SM; Yoon G; Han SS; Koo HS
    Genes Cells; 2009 Mar; 14(3):319-27. PubMed ID: 19210547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.