These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17890650)

  • 21. Complementation of the Yeast Model System Reveals that Caenorhabditis elegans OCT-1 Is a Functional Transporter of Anthracyclines.
    Brosseau N; Andreev E; Ramotar D
    PLoS One; 2015; 10(7):e0133182. PubMed ID: 26177450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress.
    Zhang L; Jie G; Zhang J; Zhao B
    Free Radic Biol Med; 2009 Feb; 46(3):414-21. PubMed ID: 19061950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lethality and entropy of protein interaction networks.
    Manke T; Demetrius L; Vingron M
    Genome Inform; 2005; 16(1):159-63. PubMed ID: 16362918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The N-glycosylation pattern of Caenorhabditis elegans.
    Paschinger K; Gutternigg M; Rendić D; Wilson IB
    Carbohydr Res; 2008 Aug; 343(12):2041-9. PubMed ID: 18226806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient chaperone-mediated tubulin biogenesis is essential for cell division and cell migration in C. elegans.
    Lundin VF; Srayko M; Hyman AA; Leroux MR
    Dev Biol; 2008 Jan; 313(1):320-34. PubMed ID: 18062952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotes.
    Lushchak VI
    Acta Biochim Pol; 2006; 53(4):679-84. PubMed ID: 17063208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beneficial effects of Chinese prescription Kangen-karyu on diabetes associated with hyperlipidemia, advanced glycation endproducts, and oxidative stress in streptozotocin-induced diabetic rats.
    Kim HY; Okamoto T; Yokozawa T
    J Ethnopharmacol; 2009 Jul; 124(2):263-9. PubMed ID: 19397970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell fusion in Caenorhabditis elegans.
    Alper S; Podbilewicz B
    Methods Mol Biol; 2008; 475():53-74. PubMed ID: 18979238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fallen immortals.
    Swigut T; Wysocka J
    Cell; 2009 Apr; 137(2):203-5. PubMed ID: 19379684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis.
    Shyu YJ; Hiatt SM; Duren HM; Ellis RE; Kerppola TK; Hu CD
    Nat Protoc; 2008; 3(4):588-96. PubMed ID: 18388940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methylation of the sterol nucleus by STRM-1 regulates dauer larva formation in Caenorhabditis elegans.
    Hannich JT; Entchev EV; Mende F; Boytchev H; Martin R; Zagoriy V; Theumer G; Riezman I; Riezman H; Knölker HJ; Kurzchalia TV
    Dev Cell; 2009 Jun; 16(6):833-43. PubMed ID: 19531354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A protocol describing pharynx counts and a review of other assays of apoptotic cell death in the nematode worm Caenorhabditis elegans.
    Schwartz HT
    Nat Protoc; 2007; 2(3):705-14. PubMed ID: 17406633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitigating the tithonus error: genetic analysis of mortality phenotypes.
    Pletcher SD
    Sci Aging Knowledge Environ; 2002 Sep; 2002(37):pe14. PubMed ID: 14603004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tailoring the genome: the power of genetic approaches.
    Nagy A; Perrimon N; Sandmeyer S; Plasterk R
    Nat Genet; 2003 Mar; 33 Suppl():276-84. PubMed ID: 12610537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suspended animation extends survival limits of Caenorhabditis elegans and Saccharomyces cerevisiae at low temperature.
    Chan K; Goldmark JP; Roth MB
    Mol Biol Cell; 2010 Jul; 21(13):2161-71. PubMed ID: 20462960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A pathogenesis assay using Saccharomyces cerevisiae and Caenorhabditis elegans reveals novel roles for yeast AP-1, Yap1, and host dual oxidase BLI-3 in fungal pathogenesis.
    Jain C; Yun M; Politz SM; Rao RP
    Eukaryot Cell; 2009 Aug; 8(8):1218-27. PubMed ID: 19502579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The first family of cell-cell fusion.
    White JM
    Dev Cell; 2007 May; 12(5):667-8. PubMed ID: 17488618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dihydroxyacetone induces G2/M arrest and apoptotic cell death in A375P melanoma cells.
    Smith KR; Granberry M; Tan MCB; Daniel CL; Gassman NR
    Environ Toxicol; 2018 Mar; 33(3):333-342. PubMed ID: 29193605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dihydroxyacetone kinases in Saccharomyces cerevisiae are involved in detoxification of dihydroxyacetone.
    Molin M; Norbeck J; Blomberg A
    J Biol Chem; 2003 Jan; 278(3):1415-23. PubMed ID: 12401799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans.
    Mekheimer RA; Sayed AA; Ahmed EA
    J Med Chem; 2012 May; 55(9):4169-77. PubMed ID: 22509764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.