BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 17891)

  • 1. Physiological role of yeasts NAD(P)+ and NADP+-linked aldehyde dehydrogenases.
    Llorente N; de Castro IN
    Rev Esp Fisiol; 1977 Jun; 33(2):135-42. PubMed ID: 17891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aldehyde dehydrogenase (CoA-acetylating) and the mechanism of ethanol formation in the amitochondriate protist, Giardia lamblia.
    Sánchez LB
    Arch Biochem Biophys; 1998 Jun; 354(1):57-64. PubMed ID: 9633598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic role of cytoplasmic isozymes of 5,10-methylenetetrahydrofolate dehydrogenase in Saccharomyces cerevisiae.
    West MG; Horne DW; Appling DR
    Biochemistry; 1996 Mar; 35(9):3122-32. PubMed ID: 8608153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae.
    Postma E; Verduyn C; Scheffers WA; Van Dijken JP
    Appl Environ Microbiol; 1989 Feb; 55(2):468-77. PubMed ID: 2566299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions.
    Canelas AB; van Gulik WM; Heijnen JJ
    Biotechnol Bioeng; 2008 Jul; 100(4):734-43. PubMed ID: 18383140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alcohol and aldehyde dehydrogenase from Saccharomyces cerevisiae: specific activity and influence on the production of acetic acid, ethanol and higher alcohols in the first 48 h of fermentation of grape must.
    Millán C; Mauricio JC; Ortega JM
    Microbios; 1990; 64(259):93-101. PubMed ID: 2277591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae.
    Shi F; Kawai S; Mori S; Kono E; Murata K
    FEBS J; 2005 Jul; 272(13):3337-49. PubMed ID: 15978040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The activity of xylose reductase and xylitol dehydrogenase in yeasts].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Mikrobiologiia; 2003; 72(4):466-9. PubMed ID: 14526534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of a highly substituted N(6)-linked immobilized NAD(+) derivative using a rapid solid-phase modular approach: suitability for use with the kinetic locking-on tactic for bioaffinity purification of NAD(+)-dependent dehydrogenases.
    Tynan J; Forde J; McMahon M; Mulcahy P
    Protein Expr Purif; 2000 Dec; 20(3):421-34. PubMed ID: 11087682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state kinetic mechanism of the NADP+- and NAD+-dependent reactions catalysed by betaine aldehyde dehydrogenase from Pseudomonas aeruginosa.
    Velasco-García R; González-Segura L; Muñoz-Clares RA
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):675-83. PubMed ID: 11104673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of acetaldehyde and glycerol in the adaptation to ethanol stress of Saccharomyces cerevisiae and other yeasts.
    Vriesekoop F; Haass C; Pamment NB
    FEMS Yeast Res; 2009 May; 9(3):365-71. PubMed ID: 19416102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p-nitrosophenol reduction by liver cytosol from ADH-positive and -negative deermice (Peromyscus maniculatus).
    Dudley BF; Winston GW
    Arch Biochem Biophys; 1995 Feb; 316(2):879-85. PubMed ID: 7532387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and reaction mechanism of potassium-activated aldehyde dehydrogenase from Saccharomyces cerevisiae.
    Bostian KA; Betts GF
    Biochem J; 1978 Sep; 173(3):787-98. PubMed ID: 30447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Oxidation of fatty-aromatic aldehydes in liver tissues].
    Kholmina GV; Gorkin VZ
    Vopr Med Khim; 1979; 25(3):322-8. PubMed ID: 36712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyruvate-to-ethanol pathway in Entamoeba histolytica.
    Lo HS; Reeves RE
    Biochem J; 1978 Apr; 171(1):225-30. PubMed ID: 25658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and gene disruption analysis of the isocitrate dehydrogenase family in yeast.
    Zhao WN; McAlister-Henn L
    Biochemistry; 1996 Jun; 35(24):7873-8. PubMed ID: 8672488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris.
    Liu YJ; Norberg FE; Szilágyi A; De Paepe R; Akerlund HE; Rasmusson AG
    Plant Cell Physiol; 2008 Feb; 49(2):251-63. PubMed ID: 18182402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple assay for the condensation component enzyme (beta-ketoacyl synthetase) of fatty acid synthetase.
    Brown OR; Stees JL
    Microbios; 1976; 17(67):17-21. PubMed ID: 19681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.