These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 17891429)

  • 1. An adaptive ERG technique to measure normal and altered dark adaptation in the mouse.
    DeMarco PJ; Katagiri Y; Enzmann V; Kaplan HJ; McCall MA
    Doc Ophthalmol; 2007 Nov; 115(3):155-63. PubMed ID: 17891429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human retinal dark adaptation tracked in vivo with the electroretinogram: insights into processes underlying recovery of cone- and rod-mediated vision.
    Jiang X; Mahroo OA
    J Physiol; 2022 Nov; 600(21):4603-4621. PubMed ID: 35612091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attenuation of oscillatory potentials in nob2 mice.
    Yu M; Peachey NS
    Doc Ophthalmol; 2007 Nov; 115(3):173-86. PubMed ID: 17479213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive Electroretinographic Procedures for the Study of the Mouse Retina.
    Kinoshita J; Peachey NS
    Curr Protoc Mouse Biol; 2018 Mar; 8(1):1-16. PubMed ID: 30040236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rod-driven OFF pathway responses in the distal retina: dark-adapted flicker electroretinogram in mouse.
    Lei B
    PLoS One; 2012; 7(8):e43856. PubMed ID: 22937111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flash responses of mouse rod photoreceptors in the isolated retina and corneal electroretinogram: comparison of gain and kinetics.
    Heikkinen H; Vinberg F; Pitkänen M; Kommonen B; Koskelainen A
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5653-64. PubMed ID: 22743325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electroretinogram of the rhodopsin knockout mouse.
    Toda K; Bush RA; Humphries P; Sieving PA
    Vis Neurosci; 1999; 16(2):391-8. PubMed ID: 10367972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic dissection of rod and cone pathways in the dark-adapted mouse retina.
    Abd-El-Barr MM; Pennesi ME; Saszik SM; Barrow AJ; Lem J; Bramblett DE; Paul DL; Frishman LJ; Wu SM
    J Neurophysiol; 2009 Sep; 102(3):1945-55. PubMed ID: 19587322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesopic background lights enhance dark-adapted cone ERG flash responses in the intact mouse retina: a possible role for gap junctional decoupling.
    Heikkinen H; Vinberg F; Nymark S; Koskelainen A
    J Neurophysiol; 2011 May; 105(5):2309-18. PubMed ID: 21389302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transretinal ERG recordings from mouse retina: rod and cone photoresponses.
    Kolesnikov AV; Kefalov VJ
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22453300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ex vivo ERG analysis of photoreceptors using an in vivo ERG system.
    Vinberg F; Kolesnikov AV; Kefalov VJ
    Vision Res; 2014 Aug; 101():108-17. PubMed ID: 24959652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of rod and cone pathways to the dark-adapted electroretinogram (ERG) b-wave following retinal degeneration in RCS rats.
    Pinilla I; Lund RD; Sauvé Y
    Vision Res; 2004; 44(21):2467-74. PubMed ID: 15358082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cone ERG Changes During Light Adaptation in Two All-Cone Mutant Mice: Implications for Rod-Cone Pathway Interactions.
    Bush RA; Tanikawa A; Zeng Y; Sieving PA
    Invest Ophthalmol Vis Sci; 2019 Aug; 60(10):3680-3688. PubMed ID: 31469895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of three techniques to estimate the human dark-adapted cone electroretinogram.
    Verdon WA; Schneck ME; Haegerstrom-Portnoy G
    Vision Res; 2003 Sep; 43(19):2089-99. PubMed ID: 12842161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice.
    Allen AE; Lucas RJ
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):276-87. PubMed ID: 26818794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dark adaptation of rod photoreceptors in normal subjects, and in patients with Stargardt disease and an ABCA4 mutation.
    Kang Derwent JJ; Derlacki DJ; Hetling JR; Fishman GA; Birch DG; Grover S; Stone EM; Pepperberg DR
    Invest Ophthalmol Vis Sci; 2004 Jul; 45(7):2447-56. PubMed ID: 15223829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroretinography of wild-type and Cry mutant mice reveals circadian tuning of photopic and mesopic retinal responses.
    Cameron MA; Barnard AR; Hut RA; Bonnefont X; van der Horst GT; Hankins MW; Lucas RJ
    J Biol Rhythms; 2008 Dec; 23(6):489-501. PubMed ID: 19060258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-evoked responses of the mouse retinal pigment epithelium.
    Wu J; Peachey NS; Marmorstein AD
    J Neurophysiol; 2004 Mar; 91(3):1134-42. PubMed ID: 14614107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced Retinal Function in the Absence of Na(v)1.6.
    Smith BJ; Côté PD
    PLoS One; 2012; 7(2):e31476. PubMed ID: 22355369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of rod-mediated a-wave during light-adaptation in mGluR6-deficient mice.
    Ueda Y; Tammitsu N; Imai H; Honda Y; Shichida Y
    Vision Res; 2006 May; 46(10):1655-64. PubMed ID: 16243375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.