BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17891456)

  • 1. Fabrication of a multiple-diameter branched network of microvascular channels with semi-circular cross-sections using xenon difluoride etching.
    Camp JP; Stokol T; Shuler ML
    Biomed Microdevices; 2008 Apr; 10(2):179-86. PubMed ID: 17891456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional endothelialized microvascular networks with circular cross-sections in a tissue culture substrate.
    Borenstein JT; Tupper MM; Mack PJ; Weinberg EJ; Khalil AS; Hsiao J; García-Cardeña G
    Biomed Microdevices; 2010 Feb; 12(1):71-9. PubMed ID: 19787455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfabrication of cylindrical microfluidic channel networks for microvascular research.
    Huang Z; Li X; Martins-Green M; Liu Y
    Biomed Microdevices; 2012 Oct; 14(5):873-83. PubMed ID: 22729782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure optimization of microvascular scaffolds.
    Wang GJ; Hsu YF
    Biomed Microdevices; 2006 Mar; 8(1):51-8. PubMed ID: 16491331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic alignment of collagen fibers for in vitro cell culture.
    Lee P; Lin R; Moon J; Lee LP
    Biomed Microdevices; 2006 Mar; 8(1):35-41. PubMed ID: 16491329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of pulmonary cell growth parameters in a continuous perfusion microfluidic environment.
    Nalayanda DD; Puleo CM; Fulton WB; Wang TH; Abdullah F
    Exp Lung Res; 2007 Aug; 33(6):321-35. PubMed ID: 17694441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating biological vasculature into a multi-organ-chip microsystem.
    Schimek K; Busek M; Brincker S; Groth B; Hoffmann S; Lauster R; Lindner G; Lorenz A; Menzel U; Sonntag F; Walles H; Marx U; Horland R
    Lab Chip; 2013 Sep; 13(18):3588-98. PubMed ID: 23743770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An apparatus for studying the response of cultured endothelial cells to stresses.
    Shen L; Qiao A; Ding H; Mo G; Xu G; Du Y; Li M; Chen Z; Zeng Y
    Australas Phys Eng Sci Med; 2006 Jun; 29(2):196-202. PubMed ID: 16845925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometry-dependent behavior of fibroblast cells in three-dimensional silicon microstructures.
    Nikkhah M; Strobl JS; Agah M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6078-81. PubMed ID: 18003401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells.
    Lee JM; Kim JE; Kang E; Lee SH; Chung BG
    Electrophoresis; 2011 Nov; 32(22):3133-7. PubMed ID: 22102496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microvessel scaffold with circular microchannels by photoresist melting.
    Wang GJ; Ho KH; Hsu SH; Wang KP
    Biomed Microdevices; 2007 Oct; 9(5):657-63. PubMed ID: 17534716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoelectronic interface for lab-on-a-chip devices.
    Abraham JK; Yoon H; Chintakuntla R; Kavdia M; Varadan VK
    IET Nanobiotechnol; 2008 Sep; 2(3):55-61. PubMed ID: 19045838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic microvascular networks for quantitative analysis of particle adhesion.
    Prabhakarpandian B; Pant K; Scott RC; Pattillo CB; Irimia D; Kiani MF; Sundaram S
    Biomed Microdevices; 2008 Aug; 10(4):585-95. PubMed ID: 18327641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic integration of substantially round glass capillaries for lateral patch clamping on chip.
    Ong WL; Tang KC; Agarwal A; Nagarajan R; Luo LW; Yobas L
    Lab Chip; 2007 Oct; 7(10):1357-66. PubMed ID: 17896022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic control of extracellular environment in in vitro neural recording systems.
    Pearce TM; Williams JJ; Kruzel SP; Gidden MJ; Williams JC
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):207-12. PubMed ID: 16003901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture.
    Lee PJ; Hung PJ; Lee LP
    Biotechnol Bioeng; 2007 Aug; 97(5):1340-6. PubMed ID: 17286266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcirculation within grooved substrates regulates cell positioning and cell docking inside microfluidic channels.
    Manbachi A; Shrivastava S; Cioffi M; Chung BG; Moretti M; Demirci U; Yliperttula M; Khademhosseini A
    Lab Chip; 2008 May; 8(5):747-54. PubMed ID: 18432345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell culture chip using low-shear mass transport.
    Liu K; Pitchimani R; Dang D; Bayer K; Harrington T; Pappas D
    Langmuir; 2008 Jun; 24(11):5955-60. PubMed ID: 18471001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.