These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17891551)

  • 21. Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique.
    Poursamar SA; Azami M; Mozafari M
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):310-6. PubMed ID: 21310596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds.
    Kim HW; Kim HE; Salih V
    Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite.
    Becker J; Lu L; Runge MB; Zeng H; Yaszemski MJ; Dadsetan M
    J Biomed Mater Res A; 2015 Aug; 103(8):2549-57. PubMed ID: 25504776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering.
    Rajzer I; Menaszek E; Kwiatkowski R; Chrzanowski W
    J Mater Sci Mater Med; 2014 May; 25(5):1239-47. PubMed ID: 24458535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and Characterization of Novel Polycarbonate Based Polyurethane/Polymer Wrapped Hydroxyapatite Nanocomposites: Mechanical Properties, Osteoconductivity and Biocompatibility.
    Selvakumar M; Jaganathan SK; Nando GB; Chattopadhyay S
    J Biomed Nanotechnol; 2015 Feb; 11(2):291-305. PubMed ID: 26349305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro.
    Shor L; Güçeri S; Wen X; Gandhi M; Sun W
    Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering.
    Fabbri P; Bondioli F; Messori M; Bartoli C; Dinucci D; Chiellini F
    J Mater Sci Mater Med; 2010 Jan; 21(1):343-51. PubMed ID: 19653069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RGD-conjugated copolymer incorporated into composite of poly(lactide-co-glycotide) and poly(L-lactide)-grafted nanohydroxyapatite for bone tissue engineering.
    Zhang P; Wu H; Wu H; Lù Z; Deng C; Hong Z; Jing X; Chen X
    Biomacromolecules; 2011 Jul; 12(7):2667-80. PubMed ID: 21604718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds.
    Wu C; Miron R; Sculean A; Kaskel S; Doert T; Schulze R; Zhang Y
    Biomaterials; 2011 Oct; 32(29):7068-78. PubMed ID: 21704367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering.
    Wu C; Ramaswamy Y; Zreiqat H
    Acta Biomater; 2010 Jun; 6(6):2237-45. PubMed ID: 20018260
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth.
    Lebourg M; Suay Antón J; Gomez Ribelles JL
    J Mater Sci Mater Med; 2010 Jan; 21(1):33-44. PubMed ID: 19728046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering.
    Lowe B; Venkatesan J; Anil S; Shim MS; Kim SK
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1479-1487. PubMed ID: 26921504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.
    Sharma C; Dinda AK; Potdar PD; Chou CF; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():416-427. PubMed ID: 27127072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering.
    Jamalpoor Z; Mirzadeh H; Joghataei MT; Zeini D; Bagheri-Khoulenjani S; Nourani MR
    J Biomed Mater Res A; 2015 May; 103(5):1882-92. PubMed ID: 25195588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine.
    Dumont VC; Mansur HS; Mansur AA; Carvalho SM; Capanema NS; Barrioni BR
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1465-1478. PubMed ID: 27086294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Study on the development of Ag-nano-hydroxyapatite/polyamide66 porous scaffolds with surface mineralization].
    Fan J; Chang S; Dong M; Huang D; Li J; Jiang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1119-24. PubMed ID: 23469542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro mineralization of MC3T3-E1 osteoblast-like cells on collagen/nano-hydroxyapatite scaffolds coated carbon/carbon composites.
    Cao S; Li H; Li K; Lu J; Zhang L
    J Biomed Mater Res A; 2016 Feb; 104(2):533-43. PubMed ID: 26476098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular compatibility of nanocomposite scaffolds based on hydroxyapatite entrapped in cellulose network for bone repair.
    Beladi F; Saber-Samandari S; Saber-Samandari S
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():385-392. PubMed ID: 28415476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.