BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 17891575)

  • 1. A muscle controlled finite-element model of laryngeal abduction and adduction.
    Gömmel A; Butenweg C; Bolender K; Grunendahl A
    Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):377-88. PubMed ID: 17891575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
    Tao C; Jiang JJ
    J Biomech; 2007; 40(10):2191-8. PubMed ID: 17187805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction.
    Tsui CP; Tang CY; Leung CP; Cheng KW; Ng YF; Chow DH; Li CK
    Biomed Mater Eng; 2004; 14(3):271-9. PubMed ID: 15299239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of adductory force of individual laryngeal muscles in an in vivo canine model.
    Nasri S; Sercarz JA; Azizzadeh B; Kreiman J; Berke GS
    Laryngoscope; 1994 Oct; 104(10):1213-8. PubMed ID: 7934590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Modeling vocal-fold vibration via integrating two-mass model with finite-element method].
    Jiang J; Yu Q; Qiu Q; Xu K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):297-302. PubMed ID: 15884539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of a low frequency sound source in Mysticeti (baleen whales): anatomical establishment of a vocal fold homolog.
    Reidenberg JS; Laitman JT
    Anat Rec (Hoboken); 2007 Jun; 290(6):745-59. PubMed ID: 17516447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membranous and cartilaginous vocal fold adduction in singing.
    Herbst CT; Qiu Q; Schutte HK; Švec JG
    J Acoust Soc Am; 2011 Apr; 129(4):2253-62. PubMed ID: 21476680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
    Decker GZ; Thomson SL
    J Voice; 2007 May; 21(3):273-84. PubMed ID: 16504473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative model of voice F0 control.
    Farley GR
    J Acoust Soc Am; 1994 Feb; 95(2):1017-29. PubMed ID: 8132896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endoscopic measurement of vocal fold movement during adduction and abduction.
    Dailey SH; Kobler JB; Hillman RE; Tangrom K; Thananart E; Mauri M; Zeitels SM
    Laryngoscope; 2005 Jan; 115(1):178-83. PubMed ID: 15630390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional electrical stimulation of laryngeal adductor muscle restores mobility of vocal fold and improves voice sounds in cats with unilateral laryngeal paralysis.
    Katada A; Nonaka S; Adachi M; Kunibe I; Arakawa T; Imada M; Hayashi T; Zealear DL; Harabuchi Y
    Neurosci Res; 2004 Oct; 50(2):153-9. PubMed ID: 15380322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between the thyroarytenoid and lateral cricoarytenoid muscles in the control of vocal fold adduction and eigenfrequencies.
    Yin J; Zhang Z
    J Biomech Eng; 2014 Nov; 136(11):1110061-11100610. PubMed ID: 25162438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Structure of the human vocal muscle and neurochronaxial theory of phonation].
    Mira E; Vidi I
    Arch Ital Otol Rinol Laringol; 1966; 77(5):531-45. PubMed ID: 4384278
    [No Abstract]   [Full Text] [Related]  

  • 14. Control of vocal fold cover stiffness by laryngeal muscles: a preliminary study.
    Chhetri DK; Berke GS; Lotfizadeh A; Goodyer E
    Laryngoscope; 2009 Jan; 119(1):222-7. PubMed ID: 19117308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A shell finite element model of the pelvic floor muscles.
    d'Aulignac D; Martins JA; Pires EB; Mascarenhas T; Jorge RM
    Comput Methods Biomech Biomed Engin; 2005 Oct; 8(5):339-47. PubMed ID: 16298856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional model of vocal fold abduction/adduction.
    Hunter EJ; Titze IR; Alipour F
    J Acoust Soc Am; 2004 Apr; 115(4):1747-59. PubMed ID: 15101653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a combination of continuum and truss finite elements in a model of passive and active muscle tissue.
    Hedenstierna S; Halldin P; Brolin K
    Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):627-39. PubMed ID: 18642161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite-element model for the mechanical analysis of skeletal muscles.
    Johansson T; Meier P; Blickhan R
    J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative regulation of vocal fold morphology and stress by the cricothyroid and thyroarytenoid muscles.
    Deguchi S; Kawahara Y; Takahashi S
    J Voice; 2011 Nov; 25(6):e255-63. PubMed ID: 21550776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.