BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 17892313)

  • 1. Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid.
    Chen W; Kim J; Sun S; Chen S
    Langmuir; 2007 Oct; 23(22):11303-10. PubMed ID: 17892313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electro-oxidation of formic acid catalyzed by FePt nanoparticles.
    Chen W; Kim J; Sun S; Chen S
    Phys Chem Chem Phys; 2006 Jun; 8(23):2779-86. PubMed ID: 16763712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A volcano curve: optimizing methanol electro-oxidation on Pt-decorated Ru nanoparticles.
    Du B; Rabb SA; Zangmeister C; Tong Y
    Phys Chem Chem Phys; 2009 Oct; 11(37):8231-9. PubMed ID: 19756279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid.
    Zhou WP; Lewera A; Larsen R; Masel RI; Bagus PS; Wieckowski A
    J Phys Chem B; 2006 Jul; 110(27):13393-8. PubMed ID: 16821860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composition-dependent electrocatalytic activity of palladium-iridium binary alloy nanoparticles supported on the multiwalled carbon nanotubes for the electro-oxidation of formic acid.
    Bao J; Dou M; Liu H; Wang F; Liu J; Li Z; Ji J
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15223-9. PubMed ID: 26132867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of mixed Pt and Au nanoparticles on PDDA-functionalized graphene as effective electrocatalysts for formic acid oxidation of fuel cells.
    Wang S; Wang X; Jiang SP
    Phys Chem Chem Phys; 2011 Apr; 13(15):6883-91. PubMed ID: 21409276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles.
    López-Cudero A; Vidal-Iglesias FJ; Solla-Gullón J; Herrero E; Aldaz A; Feliu JM
    Phys Chem Chem Phys; 2009 Jan; 11(2):416-24. PubMed ID: 19088999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of Pt-WO3 as methanol oxidation catalysts for fuel cells.
    Jayaraman S; Jaramillo TF; Baeck SH; McFarland EW
    J Phys Chem B; 2005 Dec; 109(48):22958-66. PubMed ID: 16853991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.
    Zhou C; Wang H; Peng F; Liang J; Yu H; Yang J
    Langmuir; 2009 Jul; 25(13):7711-7. PubMed ID: 19402653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High activity of Pt(4)Mo alloy for the electrochemical oxidation of formic acid.
    Gojković SLj; Tripković AV; Stevanović RM; Krstajić NV
    Langmuir; 2007 Dec; 23(25):12760-4. PubMed ID: 17988163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation.
    Ulas B; Caglar A; Sahin O; Kivrak H
    J Colloid Interface Sci; 2018 Dec; 532():47-57. PubMed ID: 30077066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid: a novel electrocatalyst for direct methanol fuel cells.
    Lin Y; Cui X; Yen CH; Wai CM
    Langmuir; 2005 Nov; 21(24):11474-9. PubMed ID: 16285828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface.
    Casado-Rivera E; Gál Z; Angelo AC; Lind C; DiSalvo FJ; Abruña HD
    Chemphyschem; 2003 Feb; 4(2):193-9. PubMed ID: 12619419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition-tunable Pt-Co alloy nanoparticle networks: facile room-temperature synthesis and supportless electrocatalytic applications.
    Xu Y; Yuan Y; Ma A; Wu X; Liu Y; Zhang B
    Chemphyschem; 2012 Jul; 13(10):2601-9. PubMed ID: 22505245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation.
    Gu YJ; Wong WT
    Langmuir; 2006 Dec; 22(26):11447-52. PubMed ID: 17154638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial electrochemical screening of fuel cell electrocatalysts.
    Guerin S; Hayden BE; Lee CE; Mormiche C; Owen JR; Russell AE; Theobald B; Thompsett D
    J Comb Chem; 2004; 6(1):149-58. PubMed ID: 14714999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the iridium oxide thin film on the electrochemical activity of platinum nanoparticles.
    Chen A; La Russa DJ; Miller B
    Langmuir; 2004 Oct; 20(22):9695-702. PubMed ID: 15491204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-structure correlation of Pt/Ru catalysts for the electrodecomposition of methanol: the importance of RuO(2) and PtRu alloying.
    Wei YC; Liu CW; Wang KW
    Chemphyschem; 2009 Jun; 10(8):1230-7. PubMed ID: 19396843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy.
    Samjeské G; Miki A; Ye S; Osawa M
    J Phys Chem B; 2006 Aug; 110(33):16559-66. PubMed ID: 16913790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of cubic PtPd alloy nanoparticles as anode electrocatalysts for methanol and formic acid oxidation reactions.
    Lee JY; Kwak DH; Lee YW; Lee S; Park KW
    Phys Chem Chem Phys; 2015 Apr; 17(14):8642-8. PubMed ID: 25765231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.