These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 17892378)
1. High-protein intake enhances the positive impact of physical activity on BMC in prepubertal boys. Chevalley T; Bonjour JP; Ferrari S; Rizzoli R J Bone Miner Res; 2008 Jan; 23(1):131-42. PubMed ID: 17892378 [TBL] [Abstract][Full Text] [Related]
2. Influence of spontaneous calcium intake and physical exercise on the vertebral and femoral bone mineral density of children and adolescents. Ruiz JC; Mandel C; Garabedian M J Bone Miner Res; 1995 May; 10(5):675-82. PubMed ID: 7639101 [TBL] [Abstract][Full Text] [Related]
3. Do dietary calcium and age explain the controversy surrounding the relationship between bone mineral density and vitamin D receptor gene polymorphisms? Ferrari SL; Rizzoli R; Slosman DO; Bonjour JP J Bone Miner Res; 1998 Mar; 13(3):363-70. PubMed ID: 9525336 [TBL] [Abstract][Full Text] [Related]
4. Positive, site-specific associations between bone mineral status, fitness, and time spent at high-impact activities in 16- to 18-year-old boys. Ginty F; Rennie KL; Mills L; Stear S; Jones S; Prentice A Bone; 2005 Jan; 36(1):101-10. PubMed ID: 15664008 [TBL] [Abstract][Full Text] [Related]
5. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. Bonjour JP; Carrie AL; Ferrari S; Clavien H; Slosman D; Theintz G; Rizzoli R J Clin Invest; 1997 Mar; 99(6):1287-94. PubMed ID: 9077538 [TBL] [Abstract][Full Text] [Related]
6. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. MacKelvie KJ; Petit MA; Khan KM; Beck TJ; McKay HA Bone; 2004 Apr; 34(4):755-64. PubMed ID: 15050908 [TBL] [Abstract][Full Text] [Related]
7. Current physical activity is related to bone mineral density in males but not in females. Högström M; Nordström A; Alfredson H; Lorentzon R; Thorsen K; Nordström P Int J Sports Med; 2007 May; 28(5):431-6. PubMed ID: 17111323 [TBL] [Abstract][Full Text] [Related]
8. High bone density in young Hutterite children. Wey CL; Beare T; Biskeborn K; Binkley T; Arneson L; Specker B Bone; 2009 Mar; 44(3):454-60. PubMed ID: 19095089 [TBL] [Abstract][Full Text] [Related]
9. Bone and body composition of children and adolescents with repeated forearm fractures. Goulding A; Grant AM; Williams SM J Bone Miner Res; 2005 Dec; 20(12):2090-6. PubMed ID: 16294262 [TBL] [Abstract][Full Text] [Related]
10. Geometric indices of bone strength are associated with physical activity and dietary calcium intake in healthy older women. Nurzenski MK; Briffa NK; Price RI; Khoo BC; Devine A; Beck TJ; Prince RL J Bone Miner Res; 2007 Mar; 22(3):416-24. PubMed ID: 17147487 [TBL] [Abstract][Full Text] [Related]
11. Growth and bone mineral accretion during puberty in Chinese girls: a five-year longitudinal study. Zhu K; Greenfield H; Zhang Q; Du X; Ma G; Foo LH; Cowell CT; Fraser DR J Bone Miner Res; 2008 Feb; 23(2):167-72. PubMed ID: 17907923 [TBL] [Abstract][Full Text] [Related]
12. The relationship between lean body mass and bone mineral content in paediatric health and disease. Crabtree NJ; Kibirige MS; Fordham JN; Banks LM; Muntoni F; Chinn D; Boivin CM; Shaw NJ Bone; 2004 Oct; 35(4):965-72. PubMed ID: 15454104 [TBL] [Abstract][Full Text] [Related]
13. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. Bailey DA; McKay HA; Mirwald RL; Crocker PR; Faulkner RA J Bone Miner Res; 1999 Oct; 14(10):1672-9. PubMed ID: 10491214 [TBL] [Abstract][Full Text] [Related]
14. The relationship of dietary and lifestyle factors to bone mineral indexes in children. Bounds W; Skinner J; Carruth BR; Ziegler P J Am Diet Assoc; 2005 May; 105(5):735-41. PubMed ID: 15883550 [TBL] [Abstract][Full Text] [Related]
15. Tracking of environmental determinants of bone structure and strength development in healthy boys: an eight-year follow up study on the positive interaction between physical activity and protein intake from prepuberty to mid-late adolescence. Chevalley T; Bonjour JP; van Rietbergen B; Ferrari S; Rizzoli R J Bone Miner Res; 2014 Oct; 29(10):2182-92. PubMed ID: 24715534 [TBL] [Abstract][Full Text] [Related]
16. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. Fuchs RK; Bauer JJ; Snow CM J Bone Miner Res; 2001 Jan; 16(1):148-56. PubMed ID: 11149479 [TBL] [Abstract][Full Text] [Related]
17. Exercise and calcium combined results in a greater osteogenic effect than either factor alone: a blinded randomized placebo-controlled trial in boys. Bass SL; Naughton G; Saxon L; Iuliano-Burns S; Daly R; Briganti EM; Hume C; Nowson C J Bone Miner Res; 2007 Mar; 22(3):458-64. PubMed ID: 17181396 [TBL] [Abstract][Full Text] [Related]
18. Extracurricular physical activity participation modifies the association between high TV watching and low bone mass. Vicente-Rodríguez G; Ortega FB; Rey-López JP; España-Romero V; Blay VA; Blay G; Martín-Matillas M; Moreno LA; Bone; 2009 Nov; 45(5):925-30. PubMed ID: 19664736 [TBL] [Abstract][Full Text] [Related]
19. Vitamin D receptor start codon polymorphism ( FokI) is related to bone mineral density in healthy adolescent boys. Strandberg S; Nordström P; Lorentzon R; Lorentzon M J Bone Miner Metab; 2003; 21(2):109-13. PubMed ID: 12601576 [TBL] [Abstract][Full Text] [Related]
20. The association between dietary protein intake and bone mass accretion in pubertal girls with low calcium intakes. Zhang Q; Ma G; Greenfield H; Zhu K; Du X; Foo LH; Hu X; Fraser DR Br J Nutr; 2010 Mar; 103(5):714-23. PubMed ID: 19814838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]