These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 17892897)

  • 1. Heparin intercalation into reconstituted collagen I fibrils: Impact on growth kinetics and morphology.
    Stamov D; Grimmer M; Salchert K; Pompe T; Werner C
    Biomaterials; 2008 Jan; 29(1):1-14. PubMed ID: 17892897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibrillogenesis in dense collagen solutions: a physicochemical study.
    Gobeaux F; Mosser G; Anglo A; Panine P; Davidson P; Giraud-Guille MM; Belamie E
    J Mol Biol; 2008 Mar; 376(5):1509-22. PubMed ID: 18234220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of chondroitin 4-sulfate on the reconstitution of collagen fibrils in vitro.
    Tian H; Li C; Liu W; Li J; Li G
    Colloids Surf B Biointerfaces; 2013 May; 105():259-66. PubMed ID: 23376753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of saline and pH on collagen type I fibrillogenesis in vitro: fibril polymorphism and colloidal gold labelling.
    Harris JR; Reiber A
    Micron; 2007; 38(5):513-21. PubMed ID: 17045806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycosaminoglycans show a specific periodic interaction with type I collagen fibrils.
    Raspanti M; Viola M; Forlino A; Tenni R; Gruppi C; Tira ME
    J Struct Biol; 2008 Oct; 164(1):134-9. PubMed ID: 18664384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of heparin intercalation at specific binding sites in telopeptide-free collagen type I fibrils.
    Stamov DR; Khoa Nguyen TA; Evans HM; Pfohl T; Werner C; Pompe T
    Biomaterials; 2011 Oct; 32(30):7444-53. PubMed ID: 21783249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collagen-based modified membranes for tissue engineering: influence of type and molecular weight of GAGs on cell proliferation.
    Ruozi B; Parma B; Croce MA; Tosi G; Bondioli L; Vismara S; Forni F; Vandelli MA
    Int J Pharm; 2009 Aug; 378(1-2):108-15. PubMed ID: 19501149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural investigations on native collagen type I fibrils using AFM.
    Strasser S; Zink A; Janko M; Heckl WM; Thalhammer S
    Biochem Biophys Res Commun; 2007 Mar; 354(1):27-32. PubMed ID: 17210119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Thermodynamic characteristics of collagen fibrils reconstructed in vitro at different temperatures and concentrations].
    Nikolaeva TI; Tiktopulo EI; Polozov RV; Rochev IuA
    Biofizika; 2007; 52(2):261-7. PubMed ID: 17477053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibril microstructure affects strain transmission within collagen extracellular matrices.
    Roeder BA; Kokini K; Voytik-Harbin SL
    J Biomech Eng; 2009 Mar; 131(3):031004. PubMed ID: 19154063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process.
    Olszta MJ; Douglas EP; Gower LB
    Calcif Tissue Int; 2003 May; 72(5):583-91. PubMed ID: 12616327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of various salts on structural polymorphism of reconstituted type I collagen fibrils.
    Li Y; Douglas EP
    Colloids Surf B Biointerfaces; 2013 Dec; 112():42-50. PubMed ID: 23948153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Echinoderm collagen fibrils grow by surface-nucleation-and-propagation from both centers and ends.
    Trotter JA; Kadler KE; Holmes DF
    J Mol Biol; 2000 Jul; 300(3):531-40. PubMed ID: 10884349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy.
    Cisneros DA; Hung C; Franz CM; Muller DJ
    J Struct Biol; 2006 Jun; 154(3):232-45. PubMed ID: 16600632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrospun triphasic nanofibrous scaffold for bone tissue engineering.
    Catledge SA; Clem WC; Shrikishen N; Chowdhury S; Stanishevsky AV; Koopman M; Vohra YK
    Biomed Mater; 2007 Jun; 2(2):142-50. PubMed ID: 18458448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of Ti6Al4V surfaces using collagen I, III, and fibronectin. I. Biochemical and morphological characteristics of the adsorbed matrix.
    Bierbaum S; Beutner R; Hanke T; Scharnweber D; Hempel U; Worch H
    J Biomed Mater Res A; 2003 Nov; 67(2):421-30. PubMed ID: 14566782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of the influence of polysaccharides on collagen self-assembly: nanostructure and kinetics.
    Tsai SW; Liu RL; Hsu FY; Chen CC
    Biopolymers; 2006 Nov; 83(4):381-8. PubMed ID: 16826588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical structural comparisons of bones from wild-type and liliput(dtc232) gene-mutated Zebrafish.
    Wang XM; Cui FZ; Ge J; Wang Y
    J Struct Biol; 2004 Mar; 145(3):236-45. PubMed ID: 14960374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collagen-silica hybrid materials: sodium silicate and sodium chloride effects on type I collagen fibrillogenesis.
    Eglin D; Coradin T; Giraud Guille MM; Helary C; Livage J
    Biomed Mater Eng; 2005; 15(1-2):43-50. PubMed ID: 15623929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic interactions lead to the formation of asymmetric collagen-phosphophoryn aggregates.
    Dahl T; Veis A
    Connect Tissue Res; 2003; 44 Suppl 1():206-13. PubMed ID: 12952199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.