These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17893821)

  • 1. Unsaturated trinuclear osmium carbonyls: comparison with their iron analogues.
    Li QS; Xu B; Xie Y; King RB; Schaefer HF
    Dalton Trans; 2007 Oct; (38):4312-22. PubMed ID: 17893821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsaturated trinuclear ruthenium carbonyls: large structural differences between analogous carbonyl derivatives of the first, second, and third row transition metals.
    Peng B; Li QS; Xie Y; King RB; Schaefer HF
    Dalton Trans; 2008 Dec; (48):6977-86. PubMed ID: 19050784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From two-electron via four-electron to six-electron donor carbonyl groups in trinuclear derivatives of the oxophilic metal niobium.
    Peng B; Li QS; Xie Y; King RB; Schaefer HF
    Dalton Trans; 2009 May; (19):3748-55. PubMed ID: 19417940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manganese carbonyl nitrosyls: comparison with isoelectronic iron carbonyl derivatives.
    Wang H; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2006 Dec; 45(26):10849-58. PubMed ID: 17173444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homoleptic tetranuclear osmium carbonyls: from the rhombus via the butterfly to the tetrahedron.
    Xu B; Li QS; Xie Y; King RB; Schaefer HF
    Dalton Trans; 2008 Mar; (10):1366-74. PubMed ID: 18305849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homoleptic mononuclear and binuclear osmium carbonyls Os(CO)n(n = 3-5) and Os2(CO)n (n = 8, 9): comparison with the iron analogues.
    Xu B; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2008 May; 47(9):3869-78. PubMed ID: 18396867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binuclear manganese and rhenium carbonyls M2(CO)n (n = 10, 9, 8, 7): comparison of first row and third row transition metal carbonyl structures.
    Xu B; Li QS; Xie Y; King RB; Schaefer Iii HF
    Dalton Trans; 2008 May; (18):2495-502. PubMed ID: 18461206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remarkable aspects of unsaturation in trinuclear metal carbonyl clusters: the triiron species Fe3(CO)n (n = 12, 11, 10, 9).
    Wang H; Xie Y; King RB; Schaefer HF
    J Am Chem Soc; 2006 Sep; 128(35):11376-84. PubMed ID: 16939260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trinuclear iron carbonyl thiocarbonyls: the preference for four- and six-electron donor bridging thiocarbonyl groups over metal-metal multiple bonding, while satisfying the 18-electron rule.
    Zhang Z; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2009 Jul; 48(13):6167-77. PubMed ID: 19472988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimetallocene carbonyls of the third-row transition metals: the quest for high-order metal-metal multiple bonds.
    Xu B; Li QS; Xie Y; King RB; Schaefer HF
    J Phys Chem A; 2009 Nov; 113(45):12470-7. PubMed ID: 19627131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binuclear iron carbonyl nitrosyls: bridging nitrosyls versus bridging carbonyls.
    Wang H; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2008 Apr; 47(8):3045-55. PubMed ID: 18335979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Major difference between the isoelectronic fluoroborylene and carbonyl ligands: triply bridging fluoroborylene ligands in Fe3(BF)3(CO)9 isoelectronic with Fe3(CO)12.
    Xu L; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2010 Mar; 49(6):2996-3001. PubMed ID: 20143841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron carbonyl thiocarbonyls: effect of substituting a thiocarbonyl group for a carbonyl group in mononuclear and binuclear iron carbonyl derivatives.
    Zhang Z; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2009 Mar; 48(5):1974-88. PubMed ID: 19235959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hydrogen atoms on the structures of trinuclear metal carbonyl clusters: trinuclear manganese carbonyl hydrides.
    Liu XM; Wang CY; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2009 May; 48(10):4580-91. PubMed ID: 19371100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mononuclear and binuclear manganese carbonyl hydrides: the preference for bridging hydrogens over bridging carbonyls.
    Liu XM; Wang CY; Li QS; Xie Y; King RB; Schaefer HF
    Dalton Trans; 2009 May; (19):3774-85. PubMed ID: 19417943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binuclear cobalt thiocarbonyl carbonyl derivatives: comparison with homoleptic binuclear cobalt carbonyls.
    Zhang Z; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2009 Jul; 48(13):5973-82. PubMed ID: 19489594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromium carbonyl nitrosyls: comparison with isoelectronic manganese carbonyl derivatives.
    Wang H; Xie Y; Zhang JD; King RB; Schaefer HF
    Inorg Chem; 2007 Mar; 46(5):1836-46. PubMed ID: 17269763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binuclear vanadium carbonyls: the limits of the 18-electron rule.
    Liu Z; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2007 Mar; 46(5):1803-16. PubMed ID: 17284024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binuclear and trinuclear chromium carbonyls with linear bridging carbonyl groups: isocarbonyl versus carbonyl bonding of carbon monoxide ligands.
    Zhang Z; Li QS; Xie Y; King RB; Schaefer HF
    J Phys Chem A; 2010 Apr; 114(13):4672-9. PubMed ID: 20235565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binuclear homoleptic manganese carbonyls: Mn2(CO)x (x = 10, 9, 8, 7).
    Xie Y; Jang JH; King RB; Schaefer HF
    Inorg Chem; 2003 Aug; 42(17):5219-30. PubMed ID: 12924893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.