These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
500 related articles for article (PubMed ID: 17894265)
1. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265 [TBL] [Abstract][Full Text] [Related]
2. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation. Ren Y; Kang SH; Park HS; Wu YN; Zhang LQ IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):490-9. PubMed ID: 23096119 [TBL] [Abstract][Full Text] [Related]
3. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. Colombo R; Pisano F; Micera S; Mazzone A; Delconte C; Carrozza MC; Dario P; Minuco G IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):311-24. PubMed ID: 16200755 [TBL] [Abstract][Full Text] [Related]
4. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation. Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205 [TBL] [Abstract][Full Text] [Related]
5. Robot-assisted humanized passive rehabilitation training based on online assessment and regulation. Pan L; Song A; Duan S; Xu B Biomed Mater Eng; 2015; 26 Suppl 1():S655-64. PubMed ID: 26406061 [TBL] [Abstract][Full Text] [Related]
6. Assistive Control System for Upper Limb Rehabilitation Robot. Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055 [TBL] [Abstract][Full Text] [Related]
7. Myoelectrically controlled wrist robot for stroke rehabilitation. Song R; Tong KY; Hu X; Zhou W J Neuroeng Rehabil; 2013 Jun; 10():52. PubMed ID: 23758925 [TBL] [Abstract][Full Text] [Related]
8. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266 [TBL] [Abstract][Full Text] [Related]
9. A proof of concept study investigating the feasibility of combining iPAM robot assisted rehabilitation with functional electrical stimulation to deliver whole arm exercise in stroke survivors. O'Connor RJ; Jackson A; Makower SG; Cozens A; Levesley M J Med Eng Technol; 2014; 39(7):411-8. PubMed ID: 26414146 [TBL] [Abstract][Full Text] [Related]
10. ROBOT - Assisted Rehabilitation in Patients After Stroke. Kefaliakos A; Pliakos I; Kalokerinou A; Mechili A; Diomidous M Stud Health Technol Inform; 2014; 202():316. PubMed ID: 25000084 [No Abstract] [Full Text] [Related]
11. Supinator Extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke. Allington J; Spencer SJ; Klein J; Buell M; Reinkensmeyer DJ; Bobrow J Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1579-82. PubMed ID: 22254624 [TBL] [Abstract][Full Text] [Related]
12. Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training. Hu XL; Tong KY; Song R; Zheng XJ; Lui KH; Leung WW; Ng S; Au-Yeung SS J Electromyogr Kinesiol; 2009 Aug; 19(4):639-50. PubMed ID: 18490177 [TBL] [Abstract][Full Text] [Related]
15. Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Colombo R; Pisano F; Micera S; Mazzone A; Delconte C; Carrozza MC; Dario P; Minuco G Neurorehabil Neural Repair; 2008; 22(1):50-63. PubMed ID: 17626223 [TBL] [Abstract][Full Text] [Related]
16. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke. Hu XL; Tong RK; Ho NS; Xue JJ; Rong W; Li LS Neurorehabil Neural Repair; 2015 Sep; 29(8):767-76. PubMed ID: 25549656 [TBL] [Abstract][Full Text] [Related]
17. Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy. Squeri V; Masia L; Giannoni P; Sandini G; Morasso P IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):312-25. PubMed ID: 23508271 [TBL] [Abstract][Full Text] [Related]
18. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Hesse S; Schulte-Tigges G; Konrad M; Bardeleben A; Werner C Arch Phys Med Rehabil; 2003 Jun; 84(6):915-20. PubMed ID: 12808550 [TBL] [Abstract][Full Text] [Related]
19. Development and feasibility study of a sensory-enhanced robot-aided motor training in stroke rehabilitation. Liu W; Mukherjee M; Tsaur Y; Kim SH; Liu H; Natarajan P; Agah A Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5965-8. PubMed ID: 19964884 [TBL] [Abstract][Full Text] [Related]
20. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]