These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 17894268)

  • 1. A haptic knob for rehabilitation of hand function.
    Lambercy O; Dovat L; Gassert R; Burdet E; Teo CL; Milner T
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):356-66. PubMed ID: 17894268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke.
    Dovat L; Lambercy O; Gassert R; Maeder T; Milner T; Leong TC; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Dec; 16(6):582-91. PubMed ID: 19144590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual reality and a haptic master-slave set-up in post-stroke upper-limb rehabilitation.
    Houtsma JA; Van Houten FJ
    Proc Inst Mech Eng H; 2006 Aug; 220(6):715-8. PubMed ID: 16961191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-DOF robotic exoskeleton interface for hand motion assistance.
    Iqbal J; Tsagarakis NG; Caldwell DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1575-8. PubMed ID: 22254623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A haptic-robotic platform for upper-limb reaching stroke therapy: preliminary design and evaluation results.
    Lam P; Hebert D; Boger J; Lacheray H; Gardner D; Apkarian J; Mihailidis A
    J Neuroeng Rehabil; 2008 May; 5():15. PubMed ID: 18498641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An intention driven hand functions task training robotic system.
    Tong KY; Ho SK; Pang PK; Hu XL; Tam WK; Fung KL; Wei XJ; Chen PN; Chen M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3406-9. PubMed ID: 21097247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel concept for a prosthetic hand with a bidirectional interface: a feasibility study.
    Cipriani C; Antfolk C; Balkenius C; Rosén B; Lundborg G; Carrozza MC; Sebelius F
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2739-43. PubMed ID: 19758852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RUPERT closed loop control design.
    Balasubramanian S; Wei R; He J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3467-70. PubMed ID: 19163455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hand function recovery in chronic stroke with HEXORR robotic training: A case series.
    Godfrey SB; Schabowsky CN; Holley RJ; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4485-8. PubMed ID: 21095777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robotic vehicle for disabled children. Providing assisted mobility with the PALMA project.
    Ceres R; Pons JL; Calderón L; Jiménez AR; Azevedo L
    IEEE Eng Med Biol Mag; 2005; 24(6):55-63. PubMed ID: 16382806
    [No Abstract]   [Full Text] [Related]  

  • 14. Hand Rehabilitation Learning System With an Exoskeleton Robotic Glove.
    Ma Z; Ben-Tzvi P; Danoff J
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1323-1332. PubMed ID: 26595925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assistive Control System for Upper Limb Rehabilitation Robot.
    Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
    Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuro-physical rehabilitation by means of novel touch technologies.
    Confalonieri M; Tomasi P; Depaul M; Guandalini G; Baldessari M; Oss D; Prada F; Mazzalai A; Da Lio M; De Cecco M
    Stud Health Technol Inform; 2013; 189():158-63. PubMed ID: 23739376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation.
    Biggar S; Yao W
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1071-1080. PubMed ID: 26829796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic personal aids for mobility and monitoring for the elderly.
    Spenko M; Yu H; Dubowsky S
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):344-51. PubMed ID: 17009494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Standing-up robot: an assistive rehabilitative device for training and assessment.
    Kamnik R; Bajd T
    J Med Eng Technol; 2004; 28(2):74-80. PubMed ID: 14965861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.