BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 17894271)

  • 1. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury.
    Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method for automatic treadmill speed adaptation.
    von Zitzewitz J; Bernhardt M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):401-9. PubMed ID: 17894272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury.
    Emken JL; Harkema SJ; Beres-Jones JA; Ferreira CK; Reinkensmeyer DJ
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):322-34. PubMed ID: 18232376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
    Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Path control: a method for patient-cooperative robot-aided gait rehabilitation.
    Duschau-Wicke A; von Zitzewitz J; Caprez A; Lunenburger L; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):38-48. PubMed ID: 20194054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation.
    Veneman JF; Kruidhof R; Hekman EE; Ekkelenkamp R; Van Asseldonk EH; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):379-86. PubMed ID: 17894270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Walking with WALK! A cooperative, patient-driven neuroprosthetic system.
    Fuhr T; Quintern J; Riener R; Schmidt G
    IEEE Eng Med Biol Mag; 2008; 27(1):38-48. PubMed ID: 18270049
    [No Abstract]   [Full Text] [Related]  

  • 8. A robotic device for studying rodent locomotion after spinal cord injury.
    Nessler JA; Timoszyk W; Merlo M; Emken JL; Minakata K; Roy RR; de Leon RD; Edgerton VR; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):497-506. PubMed ID: 16425832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patient-cooperative strategies for robot-aided treadmill training: first experimental results.
    Riener R; Lünenburger L; Jezernik S; Anderschitz M; Colombo G; Dietz V
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):380-94. PubMed ID: 16200761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel mechatronic body weight support system.
    Frey M; Colombo G; Vaglio M; Bucher R; Jörg M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):311-21. PubMed ID: 17009491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A system to integrate electrical stimulation with robotically controlled treadmill training to rehabilitate stepping after spinal cord injury.
    Chao T; Askari S; De Leon R; Won D
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):730-7. PubMed ID: 22692941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training.
    Lo AC; Triche EW
    Neurorehabil Neural Repair; 2008; 22(6):661-71. PubMed ID: 18971381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury.
    Israel JF; Campbell DD; Kahn JH; Hornby TG
    Phys Ther; 2006 Nov; 86(11):1466-78. PubMed ID: 17079746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic synchronization of functional electrical stimulation and robotic assisted treadmill training.
    Dohring ME; Daly JJ
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):310-3. PubMed ID: 18586610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using robot-applied resistance to augment body-weight-supported treadmill training in an individual with incomplete spinal cord injury.
    Lam T; Pauhl K; Krassioukov A; Eng JJ
    Phys Ther; 2011 Jan; 91(1):143-51. PubMed ID: 21127165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.
    Regnaux JP; Saremi K; Marehbian J; Bussel B; Dobkin BH
    Neurorehabil Neural Repair; 2008; 22(4):348-54. PubMed ID: 18073325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of two mobile gait rehabilitation systems.
    Seo KH; Lee JJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):156-66. PubMed ID: 19228564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MotionTherapy@Home - First results of a clinical study with a novel robotic device for automated locomotion therapy at home.
    Rupp R; Plewa H; Schuld C; Gerner HJ; Hofer EP; Knestel M
    Biomed Tech (Berl); 2011 Feb; 56(1):11-21. PubMed ID: 21080894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic orthoses for body weight-supported treadmill training.
    Winchester P; Querry R
    Phys Med Rehabil Clin N Am; 2006 Feb; 17(1):159-72. PubMed ID: 16517349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cable-driven locomotor training system for restoration of gait in human SCI.
    Wu M; Hornby TG; Landry JM; Roth H; Schmit BD
    Gait Posture; 2011 Feb; 33(2):256-60. PubMed ID: 21232961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.