These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 17894279)

  • 1. Optimizing assisted communication devices for Children with motor impairments using a model of information rate and channel capacity.
    Sanger TD; Henderson J
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):458-68. PubMed ID: 17894279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Model to Estimate the Optimal Layout for Assistive Communication Touchscreen Devices in Children With Dyskinetic Cerebral Palsy.
    Bertucco M; Sanger TD
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1371-1380. PubMed ID: 29985146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-performance keyboard neural prosthesis enabled by task optimization.
    Nuyujukian P; Fan JM; Kao JC; Ryu SI; Shenoy KV
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):21-29. PubMed ID: 25203982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Issues in augmentative and alternative communication in child psychiatry.
    Sevcik RA; Romski MA
    Child Adolesc Psychiatr Clin N Am; 1999 Jan; 8(1):77-87. PubMed ID: 9894030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Touch a screen or turn a knob: choosing the best device for the job.
    Rogers WA; Fisk AD; McLaughlin AC; Pak R
    Hum Factors; 2005; 47(2):271-88. PubMed ID: 16170938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple device to assess and train motor coordination.
    Petrofsky JS; Petrofsky D
    J Med Eng Technol; 2004; 28(2):67-73. PubMed ID: 14965860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual keyboard with the prediction of words for children with cerebral palsy.
    Jordan M; Nogueira GN; Brito A; Nohama P
    Comput Methods Programs Biomed; 2020 Aug; 192():105402. PubMed ID: 32208301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Text generation from Taiwanese Sign Language using a PST-based language model for augmentative communication.
    Wu CH; Chiu YH; Guo CS
    IEEE Trans Neural Syst Rehabil Eng; 2004 Dec; 12(4):441-54. PubMed ID: 15615000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A probabilistic algorithm for estimating the intention of computer users with movement disorders.
    Grossman AD; Sanger TD
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3605-8. PubMed ID: 18002777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Body-machine interface for control of a screen cursor for a child with congenital absence of upper and lower limbs: a case report.
    Lee MH; Ranganathan R; Kagerer FA; Mukherjee R
    J Neuroeng Rehabil; 2016 Mar; 13():34. PubMed ID: 27009334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical exposure differences between children and adults when using standard and small computer input devices.
    Blackstone JM; Karr C; Camp J; Johnson PW
    Ergonomics; 2008 Jun; 51(6):872-89. PubMed ID: 18484401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The design and evaluation of a peripheral device for use with a computer game intended for children with motor disabilities.
    Scardovelli TA; Frère AF
    Comput Methods Programs Biomed; 2015 Jan; 118(1):44-58. PubMed ID: 25459524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability and validity of the C-BiLLT: a new instrument to assess comprehension of spoken language in young children with cerebral palsy and complex communication needs.
    Geytenbeek JJ; Mokkink LB; Knol DL; Vermeulen RJ; Oostrom KJ
    Augment Altern Commun; 2014 Sep; 30(3):252-66. PubMed ID: 24948533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A brain-computer interface using electrocorticographic signals in humans.
    Leuthardt EC; Schalk G; Wolpaw JR; Ojemann JG; Moran DW
    J Neural Eng; 2004 Jun; 1(2):63-71. PubMed ID: 15876624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parents' and professionals' perceptions of Quality of Life in children with speech and language difficulty.
    Markham C; Dean T
    Int J Lang Commun Disord; 2006; 41(2):189-212. PubMed ID: 16546895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaching movements in childhood dystonia contain signal-dependent noise.
    Sanger TD; Kaiser J; Placek B
    J Child Neurol; 2005 Jun; 20(6):489-96. PubMed ID: 15996397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate.
    Scherer R; Müller GR; Neuper C; Graimann B; Pfurtscheller G
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):979-84. PubMed ID: 15188868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Error-tolerant sign retrieval using visual features and maximum a posteriori estimation.
    Wu CH; Chiu YH; Cheng KW
    IEEE Trans Pattern Anal Mach Intell; 2004 Apr; 26(4):495-508. PubMed ID: 15382653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A population-based study of communication impairment in cerebral palsy.
    Zhang JY; Oskoui M; Shevell M
    J Child Neurol; 2015 Mar; 30(3):277-84. PubMed ID: 25051968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the building of binary spelling interfaces for augmentative communication.
    Tregoubov M; Birbaumer N
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):300-5. PubMed ID: 15709667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.