BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 17894417)

  • 1. Protease-mediated arsenic prodrug strategy in cancer and infectious diseases: a hypothesis for targeted activation.
    Bellacchio E; Paggi MG
    J Cell Physiol; 2008 Mar; 214(3):681-6. PubMed ID: 17894417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly and selective "in synthesis" labeling of quenched fluorogenic protease substrates.
    Chersi A; Ferracuti S; Falasca G; Butler RH; Fruci D
    Anal Biochem; 2006 Oct; 357(2):194-9. PubMed ID: 16930525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled systemic release of therapeutic peptides from PEGylated prodrugs by serum proteases.
    Nollmann FI; Goldbach T; Berthold N; Hoffmann R
    Angew Chem Int Ed Engl; 2013 Jul; 52(29):7597-9. PubMed ID: 23766125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteochemometrics mapping of the interaction space for retroviral proteases and their substrates.
    Kontijevskis A; Petrovska R; Yahorava S; Komorowski J; Wikberg JE
    Bioorg Med Chem; 2009 Jul; 17(14):5229-37. PubMed ID: 19539482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of fluorescent imaging to investigate pathological protease activity.
    Blum G
    Curr Opin Drug Discov Devel; 2008 Sep; 11(5):708-16. PubMed ID: 18729022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of bacterial proteases with a panel of fluorescent peptide substrates.
    Wildeboer D; Jeganathan F; Price RG; Abuknesha RA
    Anal Biochem; 2009 Jan; 384(2):321-8. PubMed ID: 18957278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Disease-Associated Enzymes to Activate Antimicrobial Peptide Prodrugs.
    Forde ÉB; Kelly G; Makki H; Al-Sharshahi Z; Fitzgerald-Hughes D; Devocelle M
    Methods Mol Biol; 2017; 1548():359-368. PubMed ID: 28013518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of protease substrates by combinatorial profiling on TentaGel beads.
    Kofoed J; Reymond JL
    Chem Commun (Camb); 2007 Nov; (43):4453-5. PubMed ID: 17971953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The serine protease inhibitor protease nexin-1 controls mammary cancer metastasis through LRP-1-mediated MMP-9 expression.
    Fayard B; Bianchi F; Dey J; Moreno E; Djaffer S; Hynes NE; Monard D
    Cancer Res; 2009 Jul; 69(14):5690-8. PubMed ID: 19584287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid profiling of peptide stability in proteolytic environments.
    Gorris HH; Bade S; Röckendorf N; Albers E; Schmidt MA; Fránek M; Frey A
    Anal Chem; 2009 Feb; 81(4):1580-6. PubMed ID: 19159331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural modification of protease inducible preprogrammed nanofiber precursor.
    Law B; Tung CH
    Biomacromolecules; 2008 Feb; 9(2):421-5. PubMed ID: 18177006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis, and evaluation of tripeptidic promoieties targeting the intestinal peptide transporter hPEPT1.
    Thorn K; Andersen R; Christensen J; Jakobsen P; Nielsen CU; Steffansen B; Begtrup M
    ChemMedChem; 2007 Apr; 2(4):479-87. PubMed ID: 17407174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of the active matrix metalloproteinase-2: positioning of the N-terminal fragment and binding of a small peptide substrate.
    Díaz N; Suárez D
    Proteins; 2008 Jul; 72(1):50-61. PubMed ID: 18186480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of central selective acetylcholinesterase inhibitors by means of a "bio-oxidisable prodrug" strategy.
    Bohn P; Le Fur N; Hagues G; Costentin J; Torquet N; Papamicaël C; Marsais F; Levacher V
    Org Biomol Chem; 2009 Jun; 7(12):2612-8. PubMed ID: 19503937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting proteases: successes, failures and future prospects.
    Turk B
    Nat Rev Drug Discov; 2006 Sep; 5(9):785-99. PubMed ID: 16955069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic activity of the Staphylococcus aureus SplB serine protease is induced by substrates containing the sequence Trp-Glu-Leu-Gln.
    Dubin G; Stec-Niemczyk J; Kisielewska M; Pustelny K; Popowicz GM; Bista M; Kantyka T; Boulware KT; Stennicke HR; Czarna A; Phopaisarn M; Daugherty PS; Thøgersen IB; Enghild JJ; Thornberry N; Dubin A; Potempa J
    J Mol Biol; 2008 May; 379(2):343-56. PubMed ID: 18448121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutual helper effect in copulsing of dendritic cells with 2 antigens: a novel approach for improvement of dendritic-based vaccine efficacy against tumors and infectious diseases simultaneously.
    Shojaeian J; Jeddi-Tehrani M; Dokouhaki P; Mahmoudi AR; Ghods R; Bozorgmehr M; Nikoo S; Bayat AA; Akhondi MM; Ostadkarampour M; Rezania S; Zarnani AH
    J Immunother; 2009 May; 32(4):325-32. PubMed ID: 19342973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the cutting edge: protease-sensitive prodrugs for the delivery of photoactive compounds.
    Gabriel D; Zuluaga MF; Lange N
    Photochem Photobiol Sci; 2011 May; 10(5):689-703. PubMed ID: 21298150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular design of specific metal-binding peptide sequences from protein fragments: theory and experiment.
    Kozísek M; Svatos A; Budesínský M; Muck A; Bauer MC; Kotrba P; Ruml T; Havlas Z; Linse S; Rulísek L
    Chemistry; 2008; 14(26):7836-46. PubMed ID: 18633954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.