BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 17894459)

  • 41. Wheat straw cellulose dissolution and isolation by tetra-n-butylammonium hydroxide.
    Zhong C; Wang C; Huang F; Jia H; Wei P
    Carbohydr Polym; 2013 Apr; 94(1):38-45. PubMed ID: 23544507
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution.
    Qi H; Cai J; Zhang L; Kuga S
    Biomacromolecules; 2009 Jun; 10(6):1597-602. PubMed ID: 19415903
    [TBL] [Abstract][Full Text] [Related]  

  • 43. One step conversion of wheat straw to sugars by simultaneous ball milling, mild acid, and fungus Penicillium simplicissimum treatment.
    Yuan L; Chen Z; Zhu Y; Liu X; Liao H; Chen D
    Appl Biochem Biotechnol; 2012 May; 167(1):39-51. PubMed ID: 22467431
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microstructure and surface properties of fibrous and ground cellulosic substrates.
    Csiszár E; Fekete E
    Langmuir; 2011 Jul; 27(13):8444-50. PubMed ID: 21657257
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface functionalization of nanofibrillated cellulose extracted from wheat straw: Effect of process parameters.
    Singh M; Kaushik A; Ahuja D
    Carbohydr Polym; 2016 Oct; 150():48-56. PubMed ID: 27312612
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Micro-FTIR combined with curve fitting method to study cellulose crystallinity of developing cotton fibers.
    Zhang L; Li X; Zhang S; Gao Q; Lu Q; Peng R; Xu P; Shang H; Yuan Y; Zou H
    Anal Bioanal Chem; 2021 Feb; 413(5):1313-1320. PubMed ID: 33404744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of dimethyl formamide pulping of wheat straw on cellulose degradation and comparison with Kraft process.
    Ziaie-Shirkolaee Y; Mohammadi-Rovshandeh J; Rezayati-Charani P; Khajeheian MB
    Bioresour Technol; 2008 Jun; 99(9):3568-78. PubMed ID: 17904837
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical properties and network structure of wheat gluten foams.
    Blomfeldt TO; Kuktaite R; Johansson E; Hedenqvist MS
    Biomacromolecules; 2011 May; 12(5):1707-15. PubMed ID: 21413807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure study of cellulose fibers wet-spun from environmentally friendly NaOH/urea aqueous solutions.
    Chen X; Burger C; Wan F; Zhang J; Rong L; Hsiao BS; Chu B; Cai J; Zhang L
    Biomacromolecules; 2007 Jun; 8(6):1918-26. PubMed ID: 17472335
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites.
    Pommet M; Juntaro J; Heng JY; Mantalaris A; Lee AF; Wilson K; Kalinka G; Shaffer MS; Bismarck A
    Biomacromolecules; 2008 Jun; 9(6):1643-51. PubMed ID: 18491942
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano.
    Karimi S; Tahir PM; Karimi A; Dufresne A; Abdulkhani A
    Carbohydr Polym; 2014 Jan; 101():878-85. PubMed ID: 24299851
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling crystal and molecular deformation in regenerated cellulose fibers.
    Eichhorn SJ; Young RJ; Davies GR
    Biomacromolecules; 2005; 6(1):507-13. PubMed ID: 15638559
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept.
    Kaparaju P; Serrano M; Thomsen AB; Kongjan P; Angelidaki I
    Bioresour Technol; 2009 May; 100(9):2562-8. PubMed ID: 19135361
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solution blowing of submicron-scale cellulose fibers.
    Zhuang X; Yang X; Shi L; Cheng B; Guan K; Kang W
    Carbohydr Polym; 2012 Oct; 90(2):982-7. PubMed ID: 22840029
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of a new natural cellulosic fiber extracted from Derris scandens stem.
    C IP; R S
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2303-2313. PubMed ID: 33091474
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water.
    Aulin C; Ahola S; Josefsson P; Nishino T; Hirose Y; Osterberg M; Wågberg L
    Langmuir; 2009 Jul; 25(13):7675-85. PubMed ID: 19348478
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment.
    Li Q; He YC; Xian M; Jun G; Xu X; Yang JM; Li LZ
    Bioresour Technol; 2009 Jul; 100(14):3570-5. PubMed ID: 19329299
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fractionation of wheat and barley straw to access high-molecular-mass hemicelluloses prior to ethanol production.
    Persson T; Ren JL; Joelsson E; Jönsson AS
    Bioresour Technol; 2009 Sep; 100(17):3906-13. PubMed ID: 19349171
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of alkaline hydrogen peroxide treatment of cotton and wheat straw on cellulose crystallinity and on composition and site and extent of disappearance of wheat straw cell wall phenolics and monosaccharides by sheep.
    Kerley MS; Garleb KA; Fahey GC; Berger LL; Moore KJ; Phillips GN; Gould JM
    J Anim Sci; 1988 Dec; 66(12):3235-44. PubMed ID: 3230083
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation.
    Wu Y; Wang S; Zhou D; Xing C; Zhang Y; Cai Z
    Bioresour Technol; 2010 Apr; 101(8):2867-71. PubMed ID: 19954968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.