BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 17894818)

  • 1. Modulation of high-frequency (600 Hz) somatosensory-evoked potentials after rTMS of the primary sensory cortex.
    Restuccia D; Ulivelli M; De Capua A; Bartalini S; Rossi S
    Eur J Neurosci; 2007 Oct; 26(8):2349-58. PubMed ID: 17894818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow repetitive transcranial magnetic stimulation increases somatosensory high-frequency oscillations in humans.
    Ogawa A; Ukai S; Shinosaki K; Yamamoto M; Kawaguchi S; Ishii R; Takeda M
    Neurosci Lett; 2004 Apr; 358(3):193-6. PubMed ID: 15039114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits.
    Bestmann S; Baudewig J; Siebner HR; Rothwell JC; Frahm J
    Eur J Neurosci; 2004 Apr; 19(7):1950-62. PubMed ID: 15078569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of repetitive transcranial magnetic stimulation applied over the premotor cortex on somatosensory-evoked potentials and regional cerebral blood flow.
    Urushihara R; Murase N; Rothwell JC; Harada M; Hosono Y; Asanuma K; Shimazu H; Nakamura K; Chikahisa S; Kitaoka K; Sei H; Morita Y; Kaji R
    Neuroimage; 2006 Jun; 31(2):699-709. PubMed ID: 16466934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-stem components of high-frequency somatosensory evoked potentials are modulated by arousal changes: nasopharyngeal recordings in healthy humans.
    Restuccia D; Della Marca G; Valeriani M; Rubino M; Scarano E; Tonali P
    Clin Neurophysiol; 2004 Jun; 115(6):1392-8. PubMed ID: 15134707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crossed inhibition of sensory cortex by 0.3 Hz transcranial magnetic stimulation of motor cortex.
    Seyal M; Shatzel AJ; Richardson SP
    J Clin Neurophysiol; 2005 Dec; 22(6):418-21. PubMed ID: 16462199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different origins of low- and high-frequency components (600 Hz) of human somatosensory evoked potentials.
    Gobbelé R; Waberski TD; Simon H; Peters E; Klostermann F; Curio G; Buchner H
    Clin Neurophysiol; 2004 Apr; 115(4):927-37. PubMed ID: 15003775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatosensory evoked high-frequency oscillations reflecting thalamo-cortical activity are decreased in migraine patients between attacks.
    Coppola G; Vandenheede M; Di Clemente L; Ambrosini A; Fumal A; De Pasqua V; Schoenen J
    Brain; 2005 Jan; 128(Pt 1):98-103. PubMed ID: 15563513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological evidence for altered early cerebral somatosensory signal processing in schizophrenia.
    Waberski TD; Norra C; Kawohl W; Thyerlei D; Hock D; Klostermann F; Curio G; Buchner H; Hoff P; Gobbelé R
    Psychophysiology; 2004 May; 41(3):361-6. PubMed ID: 15102120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of the rat somatosensory cortex at different frequencies and pulse widths.
    Van Camp N; Verhoye M; Van der Linden A
    NMR Biomed; 2006 Feb; 19(1):10-7. PubMed ID: 16408324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical plasticity: effect of high and low intensity conditioning electrical stimulations (100 Hz) on SEPs to painful finger stimulation.
    Wang L; Chen AC; Arendt-Nielsen L
    Clin Neurophysiol; 2006 May; 117(5):1075-84. PubMed ID: 16545600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of temporary bilateral ligation of the internal carotid arteries on the low- and high-frequency somatic evoked potentials in the swine.
    Wang Y; Hosler G; Zhang T; Okada Y
    Clin Neurophysiol; 2005 Oct; 116(10):2420-8. PubMed ID: 16125462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans.
    Tsuji T; Rothwell JC
    J Physiol; 2002 Apr; 540(Pt 1):367-76. PubMed ID: 11927693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences between primary somatosensory cortex- and vertex-derived somatosensory-evoked potentials in the rat.
    Stienen PJ; van den Brom WE; de Groot HN; Venker-van Haagen AJ; Hellebrekers LJ
    Brain Res; 2004 Dec; 1030(2):256-66. PubMed ID: 15571674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypofunctioning of sensory gating mechanisms in patients with obsessive-compulsive disorder.
    Rossi S; Bartalini S; Ulivelli M; Mantovani A; Di Muro A; Goracci A; Castrogiovanni P; Battistini N; Passero S
    Biol Psychiatry; 2005 Jan; 57(1):16-20. PubMed ID: 15607295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociation of thalamic high frequency oscillations and slow component of sensory evoked potentials following damage to ascending pathways.
    Hanajima R; Dostrovsky JO; Lozano AM; Chen R
    Clin Neurophysiol; 2006 Apr; 117(4):906-11. PubMed ID: 16495148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of thirty minutes mobile phone use on the human sensory cortex.
    Yuasa K; Arai N; Okabe S; Tarusawa Y; Nojima T; Hanajima R; Terao Y; Ugawa Y
    Clin Neurophysiol; 2006 Apr; 117(4):900-5. PubMed ID: 16439184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex.
    Enomoto H; Ugawa Y; Hanajima R; Yuasa K; Mochizuki H; Terao Y; Shiio Y; Furubayashi T; Iwata NK; Kanazawa I
    Clin Neurophysiol; 2001 Nov; 112(11):2154-8. PubMed ID: 11682355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictability of the target stimulus for sensory-guided movement modulates early somatosensory cortical potentials.
    Legon W; Staines WR
    Clin Neurophysiol; 2006 Jun; 117(6):1345-53. PubMed ID: 16644272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Tactile agnosia and dysfunction of the primary somatosensory area. Data of the study by somatosensory evoked potentials in patients with deficits of tactile object recognition].
    Mauguière F; Isnard J
    Rev Neurol (Paris); 1995; 151(8-9):518-27. PubMed ID: 8578073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.