These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 17895249)
21. Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2-T1R3 receptor. Temussi PA FEBS Lett; 2002 Aug; 526(1-3):1-4. PubMed ID: 12208493 [TBL] [Abstract][Full Text] [Related]
22. Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2-T1R3 human sweet receptor. Assadi-Porter FM; Maillet EL; Radek JT; Quijada J; Markley JL; Max M J Mol Biol; 2010 May; 398(4):584-99. PubMed ID: 20302879 [TBL] [Abstract][Full Text] [Related]
23. The Flexible Loop is a New Sweetness Determinant Site of the Sweet-Tasting Protein: Characterization of Novel Sweeter Mutants of the Single-Chain Monellin (MNEI). Yang L; Zhu K; Yu H; Zhang X; Liu B Chem Senses; 2019 Oct; 44(8):607-614. PubMed ID: 31504288 [TBL] [Abstract][Full Text] [Related]
24. The cysteine-rich domain of human T1R3 is necessary for the interaction between human T1R2-T1R3 sweet receptors and a sweet-tasting protein, thaumatin. Ohta K; Masuda T; Tani F; Kitabatake N Biochem Biophys Res Commun; 2011 Mar; 406(3):435-8. PubMed ID: 21329673 [TBL] [Abstract][Full Text] [Related]
25. Characteristics of antisweet substances, sweet proteins, and sweetness-inducing proteins. Kurihara Y Crit Rev Food Sci Nutr; 1992; 32(3):231-52. PubMed ID: 1418601 [TBL] [Abstract][Full Text] [Related]
26. Recent developments in the characterization and biotechnological production of sweet-tasting proteins. Faus I Appl Microbiol Biotechnol; 2000 Feb; 53(2):145-51. PubMed ID: 10709975 [TBL] [Abstract][Full Text] [Related]
27. Atomistic mechanisms underlying the activation of the G protein-coupled sweet receptor heterodimer by sugar alcohol recognition. Mahalapbutr P; Darai N; Panman W; Opasmahakul A; Kungwan N; Hannongbua S; Rungrotmongkol T Sci Rep; 2019 Jul; 9(1):10205. PubMed ID: 31308429 [TBL] [Abstract][Full Text] [Related]
29. Crystallization and preliminary X-ray diffraction studies of curculin. A new type of sweet protein having taste-modifying action. Harada S; Otani H; Maeda S; Kai Y; Kasai N; Kurihara Y J Mol Biol; 1994 Apr; 238(2):286-7. PubMed ID: 8158656 [TBL] [Abstract][Full Text] [Related]
30. Crystal structure of Mabinlin II: a novel structural type of sweet proteins and the main structural basis for its sweetness. Li DF; Jiang P; Zhu DY; Hu Y; Max M; Wang DC J Struct Biol; 2008 Apr; 162(1):50-62. PubMed ID: 18308584 [TBL] [Abstract][Full Text] [Related]
31. A Hypersweet Protein: Removal of The Specific Negative Charge at Asp21 Enhances Thaumatin Sweetness. Masuda T; Ohta K; Ojiro N; Murata K; Mikami B; Tani F; Temussi PA; Kitabatake N Sci Rep; 2016 Feb; 6():20255. PubMed ID: 26837600 [TBL] [Abstract][Full Text] [Related]
32. Identification of key neoculin residues responsible for the binding and activation of the sweet taste receptor. Koizumi T; Terada T; Nakajima K; Kojima M; Koshiba S; Matsumura Y; Kaneda K; Asakura T; Shimizu-Ibuka A; Abe K; Misaka T Sci Rep; 2015 Aug; 5():12947. PubMed ID: 26263392 [TBL] [Abstract][Full Text] [Related]
33. Hypothesis/review: the structural basis of sweetness perception of sweet-tasting plant proteins can be deduced from sequence analysis. Wintjens R; Viet TM; Mbosso E; Huet J Plant Sci; 2011 Oct; 181(4):347-54. PubMed ID: 21889040 [TBL] [Abstract][Full Text] [Related]
34. The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. Jiang P; Ji Q; Liu Z; Snyder LA; Benard LM; Margolskee RF; Max M J Biol Chem; 2004 Oct; 279(43):45068-75. PubMed ID: 15299024 [TBL] [Abstract][Full Text] [Related]
35. Interactions of the sweet protein brazzein with the sweet taste receptor. Walters DE; Hellekant G J Agric Food Chem; 2006 Dec; 54(26):10129-33. PubMed ID: 17177550 [TBL] [Abstract][Full Text] [Related]
37. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor. Maillet EL; Cui M; Jiang P; Mezei M; Hecht E; Quijada J; Margolskee RF; Osman R; Max M Chem Senses; 2015 Oct; 40(8):577-86. PubMed ID: 26377607 [TBL] [Abstract][Full Text] [Related]
38. Five amino acid residues in cysteine-rich domain of human T1R3 were involved in the response for sweet-tasting protein, thaumatin. Masuda T; Taguchi W; Sano A; Ohta K; Kitabatake N; Tani F Biochimie; 2013 Jul; 95(7):1502-5. PubMed ID: 23370115 [TBL] [Abstract][Full Text] [Related]
39. Dissimilar sweet proteins from plants: oddities or normal components? Picone D; Temussi PA Plant Sci; 2012 Oct; 195():135-42. PubMed ID: 22921007 [TBL] [Abstract][Full Text] [Related]
40. Sweet-taste-suppressing compounds: current knowledge and perspectives of application. Sigoillot M; Brockhoff A; Meyerhof W; Briand L Appl Microbiol Biotechnol; 2012 Nov; 96(3):619-30. PubMed ID: 22983596 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]