BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17895977)

  • 1. Constraint-based modeling and kinetic analysis of the Smad dependent TGF-beta signaling pathway.
    Zi Z; Klipp E
    PLoS One; 2007 Sep; 2(9):e936. PubMed ID: 17895977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct role of endocytosis for Smad and non-Smad TGF-β signaling regulation in hepatocytes.
    Meyer C; Godoy P; Bachmann A; Liu Y; Barzan D; Ilkavets I; Maier P; Herskind C; Hengstler JG; Dooley S
    J Hepatol; 2011 Aug; 55(2):369-78. PubMed ID: 21184784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mathematical model of the stoichiometric control of Smad complex formation in TGF-beta signal transduction pathway.
    Nakabayashi J; Sasaki A
    J Theor Biol; 2009 Jul; 259(2):389-403. PubMed ID: 19358856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperation of H2O2-mediated ERK activation with Smad pathway in TGF-beta1 induction of p21WAF1/Cip1.
    Kim YK; Bae GU; Kang JK; Park JW; Lee EK; Lee HY; Choi WS; Lee HW; Han JW
    Cell Signal; 2006 Feb; 18(2):236-43. PubMed ID: 15979845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TGF-beta signaling: a tale of two responses.
    Rahimi RA; Leof EB
    J Cell Biochem; 2007 Oct; 102(3):593-608. PubMed ID: 17729308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of transforming growth factor beta(1)/Smad signalling mediated by mitogen-activated protein kinase pathways in keloid fibroblasts.
    He S; Liu X; Yang Y; Huang W; Xu S; Yang S; Zhang X; Roberts MS
    Br J Dermatol; 2010 Mar; 162(3):538-46. PubMed ID: 19772524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An imbalance between Smad and MAPK pathways is responsible for TGF-beta tumor promoting effects in high-grade gliomas.
    Nickl-Jockschat T; Arslan F; Doerfelt A; Bogdahn U; Bosserhoff A; Hau P
    Int J Oncol; 2007 Feb; 30(2):499-507. PubMed ID: 17203233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transforming growth factor beta signaling via Ras in mesenchymal cells requires p21-activated kinase 2 for extracellular signal-regulated kinase-dependent transcriptional responses.
    Suzuki K; Wilkes MC; Garamszegi N; Edens M; Leof EB
    Cancer Res; 2007 Apr; 67(8):3673-82. PubMed ID: 17440079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [TGF-beta/Smad in prostate cancer: an update].
    Zha J; Huang YF
    Zhonghua Nan Ke Xue; 2009 Sep; 15(9):840-3. PubMed ID: 19947572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic control of TGF-beta signaling and its links to the cytoskeleton.
    Moustakas A; Heldin CH
    FEBS Lett; 2008 Jun; 582(14):2051-65. PubMed ID: 18375206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Termination of TGF-beta superfamily signaling through SMAD dephosphorylation--a functional genomic view.
    Lin X; Chen Y; Meng A; Feng X
    J Genet Genomics; 2007 Jan; 34(1):1-9. PubMed ID: 17469772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of FK506 on transforming growth factor beta signaling and apoptosis in chronic lymphocytic leukemia B cells.
    Romano S; Mallardo M; Chiurazzi F; Bisogni R; D'Angelillo A; Liuzzi R; Compare G; Romano MF
    Haematologica; 2008 Jul; 93(7):1039-48. PubMed ID: 18492692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Smad TGF-beta signals.
    Moustakas A; Heldin CH
    J Cell Sci; 2005 Aug; 118(Pt 16):3573-84. PubMed ID: 16105881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of transforming growth factor beta signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator-activated receptor gamma.
    Ghosh AK; Bhattacharyya S; Lakos G; Chen SJ; Mori Y; Varga J
    Arthritis Rheum; 2004 Apr; 50(4):1305-18. PubMed ID: 15077315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling.
    Watanabe Y; Itoh S; Goto T; Ohnishi E; Inamitsu M; Itoh F; Satoh K; Wiercinska E; Yang W; Shi L; Tanaka A; Nakano N; Mommaas AM; Shibuya H; Ten Dijke P; Kato M
    Mol Cell; 2010 Jan; 37(1):123-34. PubMed ID: 20129061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TGF-beta receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation.
    Droguett R; Cabello-Verrugio C; Santander C; Brandan E
    Exp Cell Res; 2010 Sep; 316(15):2487-503. PubMed ID: 20471380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TGF-beta/Smad signaling in the injured liver.
    Breitkopf K; Godoy P; Ciuclan L; Singer MV; Dooley S
    Z Gastroenterol; 2006 Jan; 44(1):57-66. PubMed ID: 16397841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-trans retinoic acid inhibited chondrogenesis of mouse embryonic palate mesenchymal cells by down-regulation of TGF-beta/Smad signaling.
    Yu Z; Xing Y
    Biochem Biophys Res Commun; 2006 Feb; 340(3):929-34. PubMed ID: 16410076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads.
    Schmierer B; Hill CS
    Mol Cell Biol; 2005 Nov; 25(22):9845-58. PubMed ID: 16260601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TGF-β signal transduction spreading to a wider field: a broad variety of mechanisms for context-dependent effects of TGF-β.
    Ikushima H; Miyazono K
    Cell Tissue Res; 2012 Jan; 347(1):37-49. PubMed ID: 21618142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.