These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 17896019)

  • 21. Acoustofluidics 15: streaming with sound waves interacting with solid particles.
    Sadhal SS
    Lab Chip; 2012 Aug; 12(15):2600-11. PubMed ID: 22744212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet.
    Rogers PR; Friend JR; Yeo LY
    Lab Chip; 2010 Nov; 10(21):2979-85. PubMed ID: 20737070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Restless rays, steady wave fronts.
    Godin OA
    J Acoust Soc Am; 2007 Dec; 122(6):3353-63. PubMed ID: 18247745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics.
    Oberti S; Neild A; Möller D; Dual J
    Ultrasonics; 2008 Nov; 48(6-7):529-36. PubMed ID: 18649908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of ultrasound streaming and radiation force in biosensors.
    Kuznetsova LA; Coakley WT
    Biosens Bioelectron; 2007 Mar; 22(8):1567-77. PubMed ID: 16979887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical study of interparticle radiation force acting on rigid spheres in a standing wave.
    Sepehrirahnama S; Lim KM; Chau FS
    J Acoust Soc Am; 2015 May; 137(5):2614-22. PubMed ID: 25994694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation.
    Ben Haj Slama R; Gilles B; Ben Chiekh M; Béra JC
    Ultrasonics; 2017 Apr; 76():217-226. PubMed ID: 28135577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Viscous torque on spherical micro particles in two orthogonal acoustic standing wave fields.
    Lamprecht A; Schwarz T; Wang J; Dual J
    J Acoust Soc Am; 2015 Jul; 138(1):23-32. PubMed ID: 26233003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.
    Collins DJ; Ma Z; Ai Y
    Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Full-circular surface acoustic wave excitation for high resolution acoustic microscopy using spherical lens and time gate technology.
    Ishikawa I; Katakura K; Ogura Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):41-6. PubMed ID: 18238397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chip integrated strategies for acoustic separation and manipulation of cells and particles.
    Laurell T; Petersson F; Nilsson A
    Chem Soc Rev; 2007 Mar; 36(3):492-506. PubMed ID: 17325788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustic streaming in micromachined flexural plate wave devices: numerical simulation and experimental verification.
    Nguyen NT; White RM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1463-71. PubMed ID: 18238693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasonic particle size fractionation in a moving air stream.
    Budwig RS; Anderson MJ; Putnam G; Manning C
    Ultrasonics; 2010 Jan; 50(1):26-31. PubMed ID: 19682719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer.
    Johansson L; Nikolajeff F; Johansson S; Thorslund S
    Anal Chem; 2009 Jul; 81(13):5188-96. PubMed ID: 19492800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.
    Lamprecht A; Lakämper S; Baasch T; Schaap IA; Dual J
    Lab Chip; 2016 Jul; 16(14):2682-93. PubMed ID: 27302661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles.
    Hahn P; Leibacher I; Baasch T; Dual J
    Lab Chip; 2015 Nov; 15(22):4302-13. PubMed ID: 26448531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices.
    Lei J; Glynne-Jones P; Hill M
    Lab Chip; 2013 Jun; 13(11):2133-43. PubMed ID: 23609455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acoustophoresis of disk-shaped microparticles: A numerical and experimental study of acoustic radiation forces and torques.
    Garbin A; Leibacher I; Hahn P; Le Ferrand H; Studart A; Dual J
    J Acoust Soc Am; 2015 Nov; 138(5):2759-69. PubMed ID: 26627752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the transient solutions of three acoustic wave equations: van Wijngaarden's equation, Stokes' equation and the time-dependent diffusion equation.
    Buckingham MJ
    J Acoust Soc Am; 2008 Oct; 124(4):1909-20. PubMed ID: 19062830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.