These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 17897197)

  • 61. Dynamics of Escherichia coli at elevated temperatures: effect of temperature history and medium.
    Van Derlinden E; Bernaerts K; Van Impe JF
    J Appl Microbiol; 2008 Feb; 104(2):438-53. PubMed ID: 17931374
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Potential application of high hydrostatic pressure to eliminate Escherichia coli O157:H7 on alfalfa sprouted seeds.
    Neetoo H; Ye M; Chen H
    Int J Food Microbiol; 2008 Dec; 128(2):348-53. PubMed ID: 18954917
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of free-SH containing compounds on allyl isothiocyanate antimicrobial activity against Escherichia coli O157:H7.
    Luciano FB; Hosseinian FS; Beta T; Holley RA
    J Food Sci; 2008 Jun; 73(5):M214-20. PubMed ID: 18577003
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Salt, alone or in combination with sucrose, can improve the survival of Escherichia coli O157 (SERL 2) in model acidic sauces.
    Chapman B; Jensen N; Ross T; Cole M
    Appl Environ Microbiol; 2006 Aug; 72(8):5165-72. PubMed ID: 16885261
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Method for assessment of functional affinity of antibodies for live bacteria.
    Brovko L; Young D; Griffiths MW
    J Microbiol Methods; 2004 Jul; 58(1):49-57. PubMed ID: 15177903
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Survival of Escherichia coli O157:H7 in waters from lakes, rivers, puddles and animal-drinking troughs.
    Avery LM; Williams AP; Killham K; Jones DL
    Sci Total Environ; 2008 Jan; 389(2-3):378-85. PubMed ID: 17920657
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Alpha-synuclein aggregation variable temperature and variable pH kinetic data: a re-analysis using the Finke-Watzky 2-step model of nucleation and autocatalytic growth.
    Morris AM; Finke RG
    Biophys Chem; 2009 Mar; 140(1-3):9-15. PubMed ID: 19101068
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Quantitation of fibroblast population growth rate in situ using computerized image analysis.
    Perricone MA; Saldate V; Hyde DM
    Microsc Res Tech; 1995 Jun; 31(3):257-64. PubMed ID: 7670164
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Modelling the growth of Trichoderma virens with limited sampling of digital images.
    Cross D; Kenerley CM
    J Appl Microbiol; 2004; 97(3):486-94. PubMed ID: 15281928
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Unravelling Escherichia coli dynamics close to the maximum growth temperature through heterogeneous modelling.
    Van Derlinden E; Bernaerts K; Van Impe JF
    Lett Appl Microbiol; 2009 Dec; 49(6):659-65. PubMed ID: 19807867
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A novel index for analysing the response of a microbial culture to changes in the environmental variables during cultivation.
    Chen S; Yang HY; Giridhar R; Wu WT
    J Appl Microbiol; 2006; 100(1):203-8. PubMed ID: 16405701
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Predictive modelling of growth of Escherichia coli O157:H7: the effects of temperature, pH and sodium chloride.
    Sutherland JP; Bayliss AJ; Braxton DS
    Int J Food Microbiol; 1995 Mar; 25(1):29-49. PubMed ID: 7599029
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Use of gradient plates to study combined effects of temperature, pH, and NaCl concentration on growth of Monascus ruber van Tieghem, an Ascomycetes fungus isolated from green table olives.
    Panagou EZ; Skandamis PN; Nychas GJ
    Appl Environ Microbiol; 2005 Jan; 71(1):392-9. PubMed ID: 15640213
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Response surface model for prediction of growth parameters from spores of Clostridium sporogenes under different experimental conditions.
    Dong Q; Tu K; Guo L; Li H; Zhao Y
    Food Microbiol; 2007 Sep; 24(6):624-32. PubMed ID: 17418314
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [The effect of temperature and pH on the growth of aerobic alkalithermophilic bacteria from hot springs in Buryatia].
    Zaĭtseva SV; Kozyreva LP; Hamsaraev BB
    Mikrobiologiia; 2004; 73(4):443-8. PubMed ID: 15521167
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A probability of growth model for Escherichia coli O157:H7 as a function of temperature, pH, acetic acid, and salt.
    McKellar RC; Lu X
    J Food Prot; 2001 Dec; 64(12):1922-8. PubMed ID: 11770618
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Predictive modelling of Escherichia coli O157:H7: inclusion of carbon dioxide as a fourth factor in a pre-existing model.
    Sutherland JP; Bayliss AJ; Braxton DS; Beaumont AL
    Int J Food Microbiol; 1997 Jul; 37(2-3):113-20. PubMed ID: 9310845
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Analysis and validation of a predictive model for growth and death of Aeromonas hydrophila under modified atmospheres at refrigeration temperatures.
    Pin C; Velasco de Diego R; George S; García de Fernando GD; Baranyi J
    Appl Environ Microbiol; 2004 Jul; 70(7):3925-32. PubMed ID: 15240265
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The enumeration of chlorine-injured Escherichia coli and Enterococcus faecalis is enhanced under conditions where reactive oxygen species are neutralized.
    Tandon P; Chhibber S; Reed RH
    Lett Appl Microbiol; 2007 Jan; 44(1):73-8. PubMed ID: 17209818
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Growth-induced changes in the proteome of Helicobacter pylori.
    Uwins C; Deitrich C; Argo E; Stewart E; Davidson I; Cash P
    Electrophoresis; 2006 Mar; 27(5-6):1136-46. PubMed ID: 16523451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.