These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 17897620)
1. Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. Ochiai N; Tokai T; Nishiuchi T; Takahashi-Ando N; Fujimura M; Kimura M Biochem Biophys Res Commun; 2007 Nov; 363(3):639-44. PubMed ID: 17897620 [TBL] [Abstract][Full Text] [Related]
2. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. Yin T; Zhang Q; Wang J; Liu H; Wang C; Xu JR; Jiang C Mol Plant Pathol; 2018 Mar; 19(3):552-563. PubMed ID: 28142217 [TBL] [Abstract][Full Text] [Related]
3. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Van Thuat N; Schäfer W; Bormann J Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226 [TBL] [Abstract][Full Text] [Related]
4. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum. Van Nguyen T; Kröger C; Bönnighausen J; Schäfer W; Bormann J Mol Plant Microbe Interact; 2013 Dec; 26(12):1378-94. PubMed ID: 23945004 [TBL] [Abstract][Full Text] [Related]
5. The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Merhej J; Urban M; Dufresne M; Hammond-Kosack KE; Richard-Forget F; Barreau C Mol Plant Pathol; 2012 May; 13(4):363-74. PubMed ID: 22013911 [TBL] [Abstract][Full Text] [Related]
6. Fusarium Tri4 encodes a multifunctional oxygenase required for trichothecene biosynthesis. McCormick SP; Alexander NJ; Proctor RH Can J Microbiol; 2006 Jul; 52(7):636-42. PubMed ID: 16917519 [TBL] [Abstract][Full Text] [Related]
7. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways. Yun Y; Liu Z; Zhang J; Shim WB; Chen Y; Ma Z Environ Microbiol; 2014 Jul; 16(7):2023-37. PubMed ID: 24237706 [TBL] [Abstract][Full Text] [Related]
8. Leucine metabolism regulates TRI6 expression and affects deoxynivalenol production and virulence in Fusarium graminearum. Subramaniam R; Narayanan S; Walkowiak S; Wang L; Joshi M; Rocheleau H; Ouellet T; Harris LJ Mol Microbiol; 2015 Nov; 98(4):760-9. PubMed ID: 26248604 [TBL] [Abstract][Full Text] [Related]
9. Enhancing the Production of the Fungal Pigment Aurofusarin in Westphal KR; Wollenberg RD; Herbst FA; Sørensen JL; Sondergaard TE; Wimmer R Toxins (Basel); 2018 Nov; 10(11):. PubMed ID: 30469367 [TBL] [Abstract][Full Text] [Related]
10. The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum. Merhej J; Richard-Forget F; Barreau C Fungal Genet Biol; 2011 Mar; 48(3):275-84. PubMed ID: 21126599 [TBL] [Abstract][Full Text] [Related]
11. The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Frandsen RJ; Nielsen NJ; Maolanon N; Sørensen JC; Olsson S; Nielsen J; Giese H Mol Microbiol; 2006 Aug; 61(4):1069-80. PubMed ID: 16879655 [TBL] [Abstract][Full Text] [Related]
12. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. Hou R; Jiang C; Zheng Q; Wang C; Xu JR Mol Plant Pathol; 2015 Dec; 16(9):987-99. PubMed ID: 25781642 [TBL] [Abstract][Full Text] [Related]
13. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. Tatebayashi K; Takekawa M; Saito H EMBO J; 2003 Jul; 22(14):3624-34. PubMed ID: 12853477 [TBL] [Abstract][Full Text] [Related]
14. FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. Jiang J; Yun Y; Liu Y; Ma Z Fungal Genet Biol; 2012 Aug; 49(8):653-62. PubMed ID: 22713714 [TBL] [Abstract][Full Text] [Related]
15. Flippases play specific but distinct roles in the development, pathogenicity, and secondary metabolism of Fusarium graminearum. Yun Y; Guo P; Zhang J; You H; Guo P; Deng H; Hao Y; Zhang L; Wang X; Abubakar YS; Zhou J; Lu G; Wang Z; Zheng W Mol Plant Pathol; 2020 Oct; 21(10):1307-1321. PubMed ID: 32881238 [TBL] [Abstract][Full Text] [Related]
16. Re-examination of genetic and nutritional factors related to trichothecene biosynthesis in Fusarium graminearum. Kitou Y; Nakajima Y; Maeda K; Jin Q; Nishiuchi T; Kanamaru K; Kobayashi T; Kimura M Biosci Biotechnol Biochem; 2016; 80(2):414-7. PubMed ID: 26413981 [TBL] [Abstract][Full Text] [Related]
17. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Seong KY; Pasquali M; Zhou X; Song J; Hilburn K; McCormick S; Dong Y; Xu JR; Kistler HC Mol Microbiol; 2009 Apr; 72(2):354-67. PubMed ID: 19320833 [TBL] [Abstract][Full Text] [Related]
18. Activation of biosynthetic gene clusters by the global transcriptional regulator TRI6 in Fusarium graminearum. Shostak K; Bonner C; Sproule A; Thapa I; Shields SWJ; Blackwell B; Vierula J; Overy D; Subramaniam R Mol Microbiol; 2020 Oct; 114(4):664-680. PubMed ID: 32692880 [TBL] [Abstract][Full Text] [Related]
19. Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi. Yoshimi A; Kojima K; Takano Y; Tanaka C Eukaryot Cell; 2005 Nov; 4(11):1820-8. PubMed ID: 16278449 [TBL] [Abstract][Full Text] [Related]
20. Contribution of peroxisomal docking machinery to mycotoxin biosynthesis, pathogenicity and pexophagy in the plant pathogenic fungus Fusarium graminearum. Chen Y; Zheng S; Ju Z; Zhang C; Tang G; Wang J; Wen Z; Chen W; Ma Z Environ Microbiol; 2018 Sep; 20(9):3224-3245. PubMed ID: 29901274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]