These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 17897712)

  • 1. Simulation of tissue differentiation in a scaffold as a function of porosity, Young's modulus and dissolution rate: application of mechanobiological models in tissue engineering.
    Byrne DP; Lacroix D; Planell JA; Kelly DJ; Prendergast PJ
    Biomaterials; 2007 Dec; 28(36):5544-54. PubMed ID: 17897712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Bone Scaffold Porosity Distributions.
    Poh PSP; Valainis D; Bhattacharya K; van Griensven M; Dondl P
    Sci Rep; 2019 Jun; 9(1):9170. PubMed ID: 31235704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An explainable machine learning-based probabilistic framework for the design of scaffolds in bone tissue engineering.
    Drakoulas G; Gortsas T; Polyzos E; Tsinopoulos S; Pyl L; Polyzos D
    Biomech Model Mechanobiol; 2024 Jun; 23(3):987-1012. PubMed ID: 38416219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of native and decellularized reproductive tissues: insights for tissue engineering strategies.
    Franko R; Franko Y; Ribes Martinez E; Ferronato GA; Heinzelmann I; Grechi N; Devkota S; Fontes PK; Coeti R; Oshiro TSI; Ferraz MAMM
    Sci Rep; 2024 Mar; 14(1):7347. PubMed ID: 38538714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of porosity and microstructure on compression behavior of methacrylate polymers in flow-through applications.
    Poljanec N; Mravljak R; Podgornik A
    J Sep Sci; 2024 May; 47(9-10):e2300767. PubMed ID: 38801756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided engineering and additive manufacturing for bioreactors in tissue engineering: State of the art and perspectives.
    Di Gravina GM; Loi G; Auricchio F; Conti M
    Biophys Rev (Melville); 2023 Sep; 4(3):031303. PubMed ID: 38510707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating the mechanical stimulation of cells on a porous hydrogel scaffold using an FSI model to predict cell differentiation.
    Azizi P; Drobek C; Budday S; Seitz H
    Front Bioeng Biotechnol; 2023; 11():1249867. PubMed ID: 37799813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of PLGA-PEDOT: PSS Conductive Scaffolds by Supercritical Foaming.
    Montes A; Valor D; Penabad Y; Domínguez M; Pereyra C; de la Ossa EM
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanobiological computer optimization framework to design scaffolds to enhance bone regeneration.
    Perier-Metz C; Duda GN; Checa S
    Front Bioeng Biotechnol; 2022; 10():980727. PubMed ID: 36159680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of treating segmental bone defects through endochondral ossification: 3D printed designs and bone metabolic activities.
    Hara K; Hellem E; Yamada S; Sariibrahimoglu K; Mølster A; Gjerdet NR; Hellem S; Mustafa K; Yassin MA
    Mater Today Bio; 2022 Mar; 14():100237. PubMed ID: 35280332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Porous Polyvinyl Acetate/Polypyrrole/Gallic Acid Scaffolds Using Supercritical CO
    Valor D; Montes A; Cózar A; Pereyra C; Martínez de la Ossa E
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Attempt to Optimize Supercritical CO
    Montes A; Valor D; Delgado L; Pereyra C; Martínez de la Ossa E
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Materials for Bone Tissue Scaffolds.
    Boccaccio A
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of an Initial Stage of the Bone Tissue Ingrowth Into Titanium Matrix by Cell Adhesion Model.
    Liu Z; Tamaddon M; Chen SM; Wang H; San Cheong V; Gang F; Sun X; Liu C
    Front Bioeng Biotechnol; 2021; 9():736063. PubMed ID: 34589474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multidisciplinary Journey towards Bone Tissue Engineering.
    Pedrero SG; Llamas-Sillero P; Serrano-López J
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications.
    Vu AA; Burke DA; Bandyopadhyay A; Bose S
    Addit Manuf; 2021 Mar; 39():. PubMed ID: 34307059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Systematically Reduced Mathematical Model for Organoid Expansion.
    Ellis MA; Dalwadi MP; Ellis MJ; Byrne HM; Waters SL
    Front Bioeng Biotechnol; 2021; 9():670186. PubMed ID: 34178962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial mechanical conditions within an optimized bone scaffold do not ensure bone regeneration - an in silico analysis.
    Perier-Metz C; Duda GN; Checa S
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1723-1731. PubMed ID: 34097188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Behavior of Bi-Layer and Dispersion Coatings Composed of Several Nanostructures on Ti13Nb13Zr Alloy.
    Rogala-Wielgus D; Majkowska-Marzec B; Zieliński A; Bartmański M; Bartosewicz B
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Vibration Damping and Compression Properties of a Lattice Structure.
    Monkova K; Vasina M; Zaludek M; Monka PP; Tkac J
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33803878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.