BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 17897743)

  • 1. Neural progenitor cell transplantation and imaging in a large animal model.
    Wang L; Martin DR; Baker HJ; Zinn KR; Kappes JC; Ding H; Gentry AS; Harper S; Snyder EY; Cox NR
    Neurosci Res; 2007 Nov; 59(3):327-40. PubMed ID: 17897743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson's disease.
    Svendsen CN; Caldwell MA; Shen J; ter Borg MG; Rosser AE; Tyers P; Karmiol S; Dunnett SB
    Exp Neurol; 1997 Nov; 148(1):135-46. PubMed ID: 9398456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro expansion of a multipotent population of human neural progenitor cells.
    Carpenter MK; Cui X; Hu ZY; Jackson J; Sherman S; Seiger A; Wahlberg LU
    Exp Neurol; 1999 Aug; 158(2):265-78. PubMed ID: 10415135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term fate of human telencephalic progenitor cells grafted into the adult mouse brain: effects of previous amplification in vitro.
    Buchet D; Buc-Caron MH; Sabaté O; Lachapelle F; Mallet J
    J Neurosci Res; 2002 May; 68(3):276-83. PubMed ID: 12111857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential for circuit reconstruction by expanded neural precursor cells explored through porcine xenografts in a rat model of Parkinson's disease.
    Armstrong RJ; Hurelbrink CB; Tyers P; Ratcliffe EL; Richards A; Dunnett SB; Rosser AE; Barker RA
    Exp Neurol; 2002 May; 175(1):98-111. PubMed ID: 12009763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth factors regulate the survival and fate of cells derived from human neurospheres.
    Caldwell MA; He X; Wilkie N; Pollack S; Marshall G; Wafford KA; Svendsen CN
    Nat Biotechnol; 2001 May; 19(5):475-9. PubMed ID: 11329020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival and differentiation of rat and human epidermal growth factor-responsive precursor cells following grafting into the lesioned adult central nervous system.
    Svendsen CN; Clarke DJ; Rosser AE; Dunnett SB
    Exp Neurol; 1996 Feb; 137(2):376-88. PubMed ID: 8635554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engraftment of sorted/expanded human central nervous system stem cells from fetal brain.
    Tamaki S; Eckert K; He D; Sutton R; Doshe M; Jain G; Tushinski R; Reitsma M; Harris B; Tsukamoto A; Gage F; Weissman I; Uchida N
    J Neurosci Res; 2002 Sep; 69(6):976-86. PubMed ID: 12205691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells.
    Storch A; Paul G; Csete M; Boehm BO; Carvey PM; Kupsch A; Schwarz J
    Exp Neurol; 2001 Aug; 170(2):317-25. PubMed ID: 11476598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of multipotent neural precursors residing in the cortex of the adult human brain.
    Arsenijevic Y; Villemure JG; Brunet JF; Bloch JJ; Déglon N; Kostic C; Zurn A; Aebischer P
    Exp Neurol; 2001 Jul; 170(1):48-62. PubMed ID: 11421583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat.
    Wu P; Tarasenko YI; Gu Y; Huang LY; Coggeshall RE; Yu Y
    Nat Neurosci; 2002 Dec; 5(12):1271-8. PubMed ID: 12426573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term survival and glial differentiation of the brain-derived precursor cell line RN33B after subretinal transplantation to adult normal rats.
    Wojciechowski AB; Englund U; Lundberg C; Warfvinge K
    Stem Cells; 2002; 20(2):163-73. PubMed ID: 11897873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of neural progenitors from bone marrow and umbilical cord blood.
    Song S; Sanchez-Ramos J
    Methods Mol Biol; 2002; 198():79-88. PubMed ID: 11951643
    [No Abstract]   [Full Text] [Related]  

  • 14. [Development of human brain neural/progenitor cells after transplantation into the brain of adult rats].
    Aleksandrova MA; Poltavtseva RA; Revishchin AV; Korochkin LI; Sukhikh GT
    Morfologiia; 2003; 123(3):17-20. PubMed ID: 12942819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem cells that know their place.
    Blackshaw S; Cepko CL
    Nat Neurosci; 2002 Dec; 5(12):1251-2. PubMed ID: 12447376
    [No Abstract]   [Full Text] [Related]  

  • 16. Retinal integration of grafts of brain-derived precursor cell lines implanted subretinally into adult, normal rats.
    Warfvinge K; Kamme C; Englund U; Wictorin K
    Exp Neurol; 2001 May; 169(1):1-12. PubMed ID: 11312552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Techniques for studying the electrophysiology of neurons derived from neural stem/progenitor cells.
    Magnuson DS; Morassutti DJ
    Methods Mol Biol; 2002; 198():179-86. PubMed ID: 11951620
    [No Abstract]   [Full Text] [Related]  

  • 18. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain.
    Nunes MC; Roy NS; Keyoung HM; Goodman RR; McKhann G; Jiang L; Kang J; Nedergaard M; Goldman SA
    Nat Med; 2003 Apr; 9(4):439-47. PubMed ID: 12627226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of EGF-responsive neurospheres from GFP transgenic mice into the eyes of rd mice.
    Lu B; Kwan T; Kurimoto Y; Shatos M; Lund RD; Young MJ
    Brain Res; 2002 Jul; 943(2):292-300. PubMed ID: 12101053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fetal hippocampal CA3 cell grafts enriched with fibroblast growth factor-2 exhibit enhanced neuronal integration into the lesioned aging rat hippocampus in a kainate model of temporal lobe epilepsy.
    Zaman V; Shetty AK
    Hippocampus; 2003; 13(5):618-32. PubMed ID: 12921351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.