These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 17897759)
1. Biomechanical rationale of ossification of the secondary ossification center on apophyseal bony ring fracture: a biomechanical study. Faizan A; Sairyo K; Goel VK; Biyani A; Ebraheim N Clin Biomech (Bristol); 2007 Dec; 22(10):1063-7. PubMed ID: 17897759 [TBL] [Abstract][Full Text] [Related]
2. Buck's direct repair of lumbar spondylolysis restores disc stresses at the involved and adjacent levels. Sairyo K; Goel VK; Faizan A; Vadapalli S; Biyani S; Ebraheim N Clin Biomech (Bristol); 2006 Dec; 21(10):1020-6. PubMed ID: 16959387 [TBL] [Abstract][Full Text] [Related]
3. Minimally invasive decompression for lumbar spinal canal stenosis in younger age patients could lead to higher stresses in the remaining neural arch -- a finite element investigation. Ivanov A; Faizan A; Sairyo K; Ebraheim N; Biyani A; Goel VK Minim Invasive Neurosurg; 2007 Feb; 50(1):18-22. PubMed ID: 17546538 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional finite element analysis of the pediatric lumbar spine. Part I: pathomechanism of apophyseal bony ring fracture. Sairyo K; Goel VK; Masuda A; Vishnubhotla S; Faizan A; Biyani A; Ebraheim N; Yonekura D; Murakami R; Terai T Eur Spine J; 2006 Jun; 15(6):923-9. PubMed ID: 16614857 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical rationale of sacral rounding deformity in pediatric spondylolisthesis: a clinical and biomechanical study. Terai T; Sairyo K; Goel VK; Ebraheim N; Biyani A; Ahmad F; Kiapour A; Higashino K; Sakai T; Yasui N Arch Orthop Trauma Surg; 2011 Sep; 131(9):1187-94. PubMed ID: 21221610 [TBL] [Abstract][Full Text] [Related]
6. Clinical significance of ring apophysis fracture in adolescent lumbar disc herniation. Chang CH; Lee ZL; Chen WJ; Tan CF; Chen LH Spine (Phila Pa 1976); 2008 Jul; 33(16):1750-4. PubMed ID: 18628708 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis. Chung SK; Kim YE; Wang KC Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003 [TBL] [Abstract][Full Text] [Related]
8. Lumbar fusion leads to increases in angular motion and stress across sacroiliac joint: a finite element study. Ivanov AA; Kiapour A; Ebraheim NA; Goel V Spine (Phila Pa 1976); 2009 Mar; 34(5):E162-9. PubMed ID: 19247155 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical rationale of endoscopic decompression for lumbar spondylolysis as an effective minimally invasive procedure - a study based on the finite element analysis. Sairyo K; Goel VK; Masuda A; Biyani A; Ebraheim N; Mishiro T; Terai T Minim Invasive Neurosurg; 2005 Apr; 48(2):119-22. PubMed ID: 15906208 [TBL] [Abstract][Full Text] [Related]
10. In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement. Chen WM; Park C; Lee K; Lee S Spine (Phila Pa 1976); 2009 Sep; 34(20):E716-23. PubMed ID: 19752690 [TBL] [Abstract][Full Text] [Related]
11. Internal and external responses of anterior lumbar/lumbosacral fusion: nonlinear finite element analysis. Guan Y; Yoganandan N; Maiman DJ; Pintar FA J Spinal Disord Tech; 2008 Jun; 21(4):299-304. PubMed ID: 18525492 [TBL] [Abstract][Full Text] [Related]
12. Viscoelastic stresses on anisotropic annulus fibrosus of lumbar disk under compression, rotation and flexion in manual treatment. Chaudhry H; Ji Z; Shenoy N; Findley T J Bodyw Mov Ther; 2009 Apr; 13(2):182-91. PubMed ID: 19329054 [TBL] [Abstract][Full Text] [Related]
14. Effect of the Total Facet Arthroplasty System after complete laminectomy-facetectomy on the biomechanics of implanted and adjacent segments. Phillips FM; Tzermiadianos MN; Voronov LI; Havey RM; Carandang G; Renner SM; Rosler DM; Ochoa JA; Patwardhan AG Spine J; 2009; 9(1):96-102. PubMed ID: 18440280 [TBL] [Abstract][Full Text] [Related]
15. A biomechanical evaluation of graded posterior element removal for treatment of lumbar stenosis: comparison of a minimally invasive approach with two standard laminectomy techniques. Bresnahan L; Ogden AT; Natarajan RN; Fessler RG Spine (Phila Pa 1976); 2009 Jan; 34(1):17-23. PubMed ID: 19127157 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical implications of degenerative joint disease in the apophyseal joints of human thoracic and lumbar vertebrae. Brown KR; Pollintine P; Adams MA Am J Phys Anthropol; 2008 Jul; 136(3):318-26. PubMed ID: 18324643 [TBL] [Abstract][Full Text] [Related]
17. Interaction between finite helical axes and facet joint forces under combined loading. Schmidt H; Heuer F; Wilke HJ Spine (Phila Pa 1976); 2008 Dec; 33(25):2741-8. PubMed ID: 19050579 [TBL] [Abstract][Full Text] [Related]
18. Revision strategies for single- and two-level total disc arthroplasty procedures: a biomechanical perspective. Cunningham BW; Hu N; Beatson HJ; Serhan H; Sefter JC; McAfee PC Spine J; 2009 Sep; 9(9):735-43. PubMed ID: 19477694 [TBL] [Abstract][Full Text] [Related]
19. Biomechanics of halo-vest and dens screw fixation for type II odontoid fracture. Ivancic PC; Beauchman NN; Mo F; Lawrence BD Spine (Phila Pa 1976); 2009 Mar; 34(5):484-90. PubMed ID: 19247169 [TBL] [Abstract][Full Text] [Related]
20. Do flexion/extension postures affect the in vivo passive lumbar spine response to applied axial twist moments? Drake JD; Callaghan JP Clin Biomech (Bristol); 2008 Jun; 23(5):510-9. PubMed ID: 18234402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]