These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
705 related articles for article (PubMed ID: 17897884)
1. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Takaishi H; Matsuki T; Nakazawa A; Takada T; Kado S; Asahara T; Kamada N; Sakuraba A; Yajima T; Higuchi H; Inoue N; Ogata H; Iwao Y; Nomoto K; Tanaka R; Hibi T Int J Med Microbiol; 2008 Jul; 298(5-6):463-72. PubMed ID: 17897884 [TBL] [Abstract][Full Text] [Related]
2. Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Matsuki T; Watanabe K; Fujimoto J; Miyamoto Y; Takada T; Matsumoto K; Oyaizu H; Tanaka R Appl Environ Microbiol; 2002 Nov; 68(11):5445-51. PubMed ID: 12406736 [TBL] [Abstract][Full Text] [Related]
3. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Matsuki T; Watanabe K; Fujimoto J; Takada T; Tanaka R Appl Environ Microbiol; 2004 Dec; 70(12):7220-8. PubMed ID: 15574920 [TBL] [Abstract][Full Text] [Related]
4. Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. Furet JP; Firmesse O; Gourmelon M; Bridonneau C; Tap J; Mondot S; Doré J; Corthier G FEMS Microbiol Ecol; 2009 Jun; 68(3):351-62. PubMed ID: 19302550 [TBL] [Abstract][Full Text] [Related]
5. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Wu X; Ma C; Han L; Nawaz M; Gao F; Zhang X; Yu P; Zhao C; Li L; Zhou A; Wang J; Moore JE; Millar BC; Xu J Curr Microbiol; 2010 Jul; 61(1):69-78. PubMed ID: 20087741 [TBL] [Abstract][Full Text] [Related]
6. Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. Kabeerdoss J; Jayakanthan P; Pugazhendhi S; Ramakrishna BS Indian J Med Res; 2015 Jul; 142(1):23-32. PubMed ID: 26261163 [TBL] [Abstract][Full Text] [Related]
7. Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Hayashi H; Sakamoto M; Benno Y Microbiol Immunol; 2002; 46(8):535-48. PubMed ID: 12363017 [TBL] [Abstract][Full Text] [Related]
8. Validation of fluorescent in situ hybridization combined with flow cytometry for assessing interindividual variation in the composition of human fecal microflora during long-term storage of samples. Rochet V; Rigottier-Gois L; Rabot S; Doré J J Microbiol Methods; 2004 Nov; 59(2):263-70. PubMed ID: 15369862 [TBL] [Abstract][Full Text] [Related]
9. Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis. Ben-Amor K; Heilig H; Smidt H; Vaughan EE; Abee T; de Vos WM Appl Environ Microbiol; 2005 Aug; 71(8):4679-89. PubMed ID: 16085863 [TBL] [Abstract][Full Text] [Related]
12. Inulin and fructo-oligosaccharides have divergent effects on colitis and commensal microbiota in HLA-B27 transgenic rats. Koleva PT; Valcheva RS; Sun X; Gänzle MG; Dieleman LA Br J Nutr; 2012 Nov; 108(9):1633-43. PubMed ID: 22243836 [TBL] [Abstract][Full Text] [Related]
13. Characterization of bacteria, clostridia and Bacteroides in faeces of vegetarians using qPCR and PCR-DGGE fingerprinting. Liszt K; Zwielehner J; Handschur M; Hippe B; Thaler R; Haslberger AG Ann Nutr Metab; 2009; 54(4):253-7. PubMed ID: 19641302 [TBL] [Abstract][Full Text] [Related]
14. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Ott SJ; Musfeldt M; Wenderoth DF; Hampe J; Brant O; Fölsch UR; Timmis KN; Schreiber S Gut; 2004 May; 53(5):685-93. PubMed ID: 15082587 [TBL] [Abstract][Full Text] [Related]
15. Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry. Vaahtovuo J; Korkeamäki M; Munukka E; Viljanen MK; Toivanen P J Microbiol Methods; 2005 Dec; 63(3):276-86. PubMed ID: 15935498 [TBL] [Abstract][Full Text] [Related]
17. Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis. Zhang M; Liu B; Zhang Y; Wei H; Lei Y; Zhao L J Clin Microbiol; 2007 Feb; 45(2):496-500. PubMed ID: 17151201 [TBL] [Abstract][Full Text] [Related]
18. Clostridium leptum group bacteria abundance and diversity in the fecal microbiota of patients with inflammatory bowel disease: a case-control study in India. Kabeerdoss J; Sankaran V; Pugazhendhi S; Ramakrishna BS BMC Gastroenterol; 2013 Jan; 13():20. PubMed ID: 23351032 [TBL] [Abstract][Full Text] [Related]
19. Design and evaluation of a 16S rRNA-targeted oligonucleotide probe for specific detection and quantitation of human faecal Bacteroides populations. Doré J; Sghir A; Hannequart-Gramet G; Corthier G; Pochart P Syst Appl Microbiol; 1998 Mar; 21(1):65-71. PubMed ID: 9741111 [TBL] [Abstract][Full Text] [Related]
20. Alterations in the mucosa-associated bacterial composition in Crohn's disease: a pilot study. Schäffler H; Kaschitzki A; Alberts C; Bodammer P; Bannert K; Köller T; Warnke P; Kreikemeyer B; Lamprecht G Int J Colorectal Dis; 2016 May; 31(5):961-971. PubMed ID: 26951181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]