BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 17897890)

  • 1. Suture-reinforced electrospun polydioxanone-elastin small-diameter tubes for use in vascular tissue engineering: a feasibility study.
    Smith MJ; McClure MJ; Sell SA; Barnes CP; Walpoth BH; Simpson DG; Bowlin GL
    Acta Biomater; 2008 Jan; 4(1):58-66. PubMed ID: 17897890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts.
    Sell SA; McClure MJ; Barnes CP; Knapp DC; Walpoth BH; Simpson DG; Bowlin GL
    Biomed Mater; 2006 Jun; 1(2):72-80. PubMed ID: 18460759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospinning-aligned and random polydioxanone-polycaprolactone-silk fibroin-blended scaffolds: geometry for a vascular matrix.
    McClure MJ; Sell SA; Ayres CE; Simpson DG; Bowlin GL
    Biomed Mater; 2009 Oct; 4(5):055010. PubMed ID: 19815970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiogenic potential of human macrophages on electrospun bioresorbable vascular grafts.
    Garg K; Sell SA; Madurantakam P; Bowlin GL
    Biomed Mater; 2009 Jun; 4(3):031001. PubMed ID: 19372619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties.
    Wise SG; Byrom MJ; Waterhouse A; Bannon PG; Weiss AS; Ng MK
    Acta Biomater; 2011 Jan; 7(1):295-303. PubMed ID: 20656079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of burst pressure competent vascular grafts via electrospinning: effects of microstructure.
    Drilling S; Gaumer J; Lannutti J
    J Biomed Mater Res A; 2009 Mar; 88(4):923-34. PubMed ID: 18384169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study.
    McClure MJ; Sell SA; Simpson DG; Walpoth BH; Bowlin GL
    Acta Biomater; 2010 Jul; 6(7):2422-33. PubMed ID: 20060934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospinning polydioxanone for biomedical applications.
    Boland ED; Coleman BD; Barnes CP; Simpson DG; Wnek GE; Bowlin GL
    Acta Biomater; 2005 Jan; 1(1):115-23. PubMed ID: 16701785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injectable in situ cross-linkable nanocomposites of biodegradable polymers and carbon nanostructures for bone tissue engineering.
    Sitharaman B; Shi X; Tran LA; Spicer PP; Rusakova I; Wilson LJ; Mikos AG
    J Biomater Sci Polym Ed; 2007; 18(6):655-71. PubMed ID: 17623549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compliant electrospun silk fibroin tubes for small vessel bypass grafting.
    Marelli B; Alessandrino A; Farè S; Freddi G; Mantovani D; Tanzi MC
    Acta Biomater; 2010 Oct; 6(10):4019-26. PubMed ID: 20466080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun protein fibers as matrices for tissue engineering.
    Li M; Mondrinos MJ; Gandhi MR; Ko FK; Weiss AS; Lelkes PI
    Biomaterials; 2005 Oct; 26(30):5999-6008. PubMed ID: 15894371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tri-layered vascular grafts composed of polycaprolactone, elastin, collagen, and silk: Optimization of graft properties.
    McClure MJ; Simpson DG; Bowlin GL
    J Mech Behav Biomed Mater; 2012 Jun; 10():48-61. PubMed ID: 22520418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration.
    Thomas V; Zhang X; Catledge SA; Vohra YK
    Biomed Mater; 2007 Dec; 2(4):224-32. PubMed ID: 18458479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a reinforced porcine elastin composite vascular scaffold.
    Hinds MT; Rowe RC; Ren Z; Teach J; Wu PC; Kirkpatrick SJ; Breneman KD; Gregory KW; Courtman DW
    J Biomed Mater Res A; 2006 Jun; 77(3):458-69. PubMed ID: 16453334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of electrospun fibrinogen structures.
    McManus MC; Boland ED; Koo HP; Barnes CP; Pawlowski KJ; Wnek GE; Simpson DG; Bowlin GL
    Acta Biomater; 2006 Jan; 2(1):19-28. PubMed ID: 16701855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manufacturing of multi-layered nanofibrous structures composed of polyurethane and poly(ethylene oxide) as potential blood vessel scaffolds.
    Shin JW; Lee YJ; Heo SJ; Park SA; Kim SH; Kim YJ; Kim DH; Shin JW
    J Biomater Sci Polym Ed; 2009; 20(5-6):757-71. PubMed ID: 19323888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creation of cross-linked electrospun isotypic-elastin fibers controlled cell-differentiation with new cross-linker.
    Miyamoto K; Atarashi M; Kadozono H; Shibata M; Koyama Y; Okai M; Inakuma A; Kitazono E; Kaneko H; Takebayashi T; Horiuchi T
    Int J Biol Macromol; 2009 Jul; 45(1):33-41. PubMed ID: 19447257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical characterization of electrospun polycaprolactone (PCL): a potential scaffold for tissue engineering.
    Duling RR; Dupaix RB; Katsube N; Lannutti J
    J Biomech Eng; 2008 Feb; 130(1):011006. PubMed ID: 18298182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of preparation conditions for small-diameter artificial polyurethane vascular graft on microstructure and mechanical properties].
    Pan S; Yang S; Yi W; Zheng H; Tao J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jan; 19(1):64-9. PubMed ID: 15704848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.