These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 17897969)
1. Physiologically based pharmacokinetic modeling of 1,4-Dioxane in rats, mice, and humans. Sweeney LM; Thrall KD; Poet TS; Corley RA; Weber TJ; Locey BJ; Clarkson J; Sager S; Gargas ML Toxicol Sci; 2008 Jan; 101(1):32-50. PubMed ID: 17897969 [TBL] [Abstract][Full Text] [Related]
2. Development of a physiologically based pharmacokinetic model for risk assessment with 1,4-dioxane. Reitz RH; McCroskey PS; Park CN; Andersen ME; Gargas ML Toxicol Appl Pharmacol; 1990 Aug; 105(1):37-54. PubMed ID: 2392805 [TBL] [Abstract][Full Text] [Related]
3. Metabolism and toxicokinetics of 1,4-dioxane in humans after inhalational exposure at rest and under physical stress. Göen T; von Helden F; Eckert E; Knecht U; Drexler H; Walter D Arch Toxicol; 2016 Jun; 90(6):1315-24. PubMed ID: 26223317 [TBL] [Abstract][Full Text] [Related]
4. An updated evaluation of the carcinogenic potential of 1,4-dioxane. Stickney JA; Sager SL; Clarkson JR; Smith LA; Locey BJ; Bock MJ; Hartung R; Olp SF Regul Toxicol Pharmacol; 2003 Oct; 38(2):183-95. PubMed ID: 14550759 [TBL] [Abstract][Full Text] [Related]
5. Cancer risk assessment for dioxane based upon a physiologically-based pharmacokinetic approach. Leung HW; Paustenbach DJ Toxicol Lett; 1990 Apr; 51(2):147-62. PubMed ID: 2158678 [TBL] [Abstract][Full Text] [Related]
6. Effects of dioxane on cytochrome P450 enzymes in liver, kidney, lung and nasal mucosa of rat. Nannelli A; De Rubertis A; Longo V; Gervasi PG Arch Toxicol; 2005 Feb; 79(2):74-82. PubMed ID: 15490126 [TBL] [Abstract][Full Text] [Related]
8. A quantitative description of suicide inhibition of dichloroacetic acid in rats and mice. Keys DA; Schultz IR; Mahle DA; Fisher JW Toxicol Sci; 2004 Dec; 82(2):381-93. PubMed ID: 15375292 [TBL] [Abstract][Full Text] [Related]
9. Carcinogenicity studies of 1,4-dioxane administered in drinking-water to rats and mice for 2 years. Kano H; Umeda Y; Kasai T; Sasaki T; Matsumoto M; Yamazaki K; Nagano K; Arito H; Fukushima S Food Chem Toxicol; 2009 Nov; 47(11):2776-84. PubMed ID: 19703511 [TBL] [Abstract][Full Text] [Related]
10. Estimation of placental and lactational transfer and tissue distribution of atrazine and its main metabolites in rodent dams, fetuses, and neonates with physiologically based pharmacokinetic modeling. Lin Z; Fisher JW; Wang R; Ross MK; Filipov NM Toxicol Appl Pharmacol; 2013 Nov; 273(1):140-58. PubMed ID: 23958493 [TBL] [Abstract][Full Text] [Related]
11. Dose-dependent fate of 1,4-dioxane in rats. Young JD; Braun WH; Gehring PJ J Toxicol Environ Health; 1978; 4(5-6):709-26. PubMed ID: 731724 [TBL] [Abstract][Full Text] [Related]
12. Reliable quantitation of β-hydroxyethoxyacetic acid in human urine by an isotope-dilution GC-MS procedure. Eckert E; Gries W; Göen T; Leng G J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Sep; 935():80-4. PubMed ID: 23954659 [TBL] [Abstract][Full Text] [Related]
13. Examination of potential mechanisms of carcinogenicity of 1,4-dioxane in rat nasal epithelial cells and hepatocytes. Goldsworthy TL; Monticello TM; Morgan KT; Bermudez E; Wilson DM; Jäckh R; Butterworth BE Arch Toxicol; 1991; 65(1):1-9. PubMed ID: 2043044 [TBL] [Abstract][Full Text] [Related]
14. Tissue dosimetry expansion and cross-validation of rat and mouse physiologically based pharmacokinetic models for trichloroethylene. Keys DA; Bruckner JV; Muralidhara S; Fisher JW Toxicol Sci; 2003 Nov; 76(1):35-50. PubMed ID: 12915716 [TBL] [Abstract][Full Text] [Related]
15. Development of a physiologically based pharmacokinetic and pharmacodynamic model to determine dosimetry and cholinesterase inhibition for a binary mixture of chlorpyrifos and diazinon in the rat. Timchalk C; Poet TS Neurotoxicology; 2008 May; 29(3):428-43. PubMed ID: 18394709 [TBL] [Abstract][Full Text] [Related]
16. Mode of action analysis for liver tumors from oral 1,4-dioxane exposures and evidence-based dose response assessment. Dourson M; Reichard J; Nance P; Burleigh-Flayer H; Parker A; Vincent M; McConnell EE Regul Toxicol Pharmacol; 2014 Apr; 68(3):387-401. PubMed ID: 24491968 [TBL] [Abstract][Full Text] [Related]
17. Use of in vitro data in developing a physiologically based pharmacokinetic model: Carbaryl as a case study. Yoon M; Kedderis GL; Yan GZ; Clewell HJ Toxicology; 2015 Jun; 332():52-66. PubMed ID: 24863738 [TBL] [Abstract][Full Text] [Related]
18. Application of PBPK modeling in support of the derivation of toxicity reference values for 1,1,1-trichloroethane. Lu Y; Rieth S; Lohitnavy M; Dennison J; El-Masri H; Barton HA; Bruckner J; Yang RS Regul Toxicol Pharmacol; 2008 Mar; 50(2):249-60. PubMed ID: 18226845 [TBL] [Abstract][Full Text] [Related]
19. Application of an updated physiologically based pharmacokinetic model for chloroform to evaluate CYP2E1-mediated renal toxicity in rats and mice. Sasso AF; Schlosser PM; Kedderis GL; Genter MB; Snawder JE; Li Z; Rieth S; Lipscomb JC Toxicol Sci; 2013 Feb; 131(2):360-74. PubMed ID: 23143927 [TBL] [Abstract][Full Text] [Related]
20. The dose-dependent fate of 1,4-dioxane in rats. Young JD; Braun WH; Gehring PJ J Environ Pathol Toxicol; 1978; 2(2):263-82. PubMed ID: 739213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]