These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 17898042)
1. Chromosomal mapping of the genetic basis of hypertension and renal disease in FHH rats. Mattson DL; Dwinell MR; Greene AS; Kwitek AE; Roman RJ; Cowley AW; Jacob HJ Am J Physiol Renal Physiol; 2007 Dec; 293(6):F1905-14. PubMed ID: 17898042 [TBL] [Abstract][Full Text] [Related]
2. Substitution of chromosome 1 ameliorates L-NAME hypertension and renal disease in the fawn-hooded hypertensive rat. Mattson DL; Kunert MP; Roman RJ; Jacob HJ; Cowley AW Am J Physiol Renal Physiol; 2005 May; 288(5):F1015-22. PubMed ID: 15644486 [TBL] [Abstract][Full Text] [Related]
3. Genetic locus on MWF rat chromosome 6 affects kidney damage in response to L-NAME treatment in spontaneously hypertensive rats. Schulz A; Schütten S; Schulte L; Kossmehl P; Nyengaard JR; Vetter R; Huber M; Kreutz R Physiol Genomics; 2010 Jun; 42(1):126-33. PubMed ID: 20388842 [TBL] [Abstract][Full Text] [Related]
4. Transfer of the Rf-1 region from FHH onto the ACI background increases susceptibility to renal impairment. Provoost AP; Shiozawa M; Van Dokkum RP; Jacob HJ Physiol Genomics; 2002 Feb; 8(2):123-9. PubMed ID: 11875190 [TBL] [Abstract][Full Text] [Related]
5. Temporal characterization of the development of renal injury in FHH rats and FHH.1BN congenic strains. Williams JM; Burke M; Lazar J; Jacob HJ; Roman RJ Am J Physiol Renal Physiol; 2011 Feb; 300(2):F330-8. PubMed ID: 21048028 [TBL] [Abstract][Full Text] [Related]
6. Chromosome substitution reveals the genetic basis of Dahl salt-sensitive hypertension and renal disease. Mattson DL; Dwinell MR; Greene AS; Kwitek AE; Roman RJ; Jacob HJ; Cowley AW Am J Physiol Renal Physiol; 2008 Sep; 295(3):F837-42. PubMed ID: 18653478 [TBL] [Abstract][Full Text] [Related]
7. Rat chromosome 19 transfer from SHR ameliorates hypertension, salt-sensitivity, cardiovascular and renal organ damage in salt-sensitive Dahl rats. Wendt N; Schulz A; Siegel AK; Weiss J; Wehland M; Sietmann A; Kossmehl P; Grimm D; Stoll M; Kreutz R J Hypertens; 2007 Jan; 25(1):95-102. PubMed ID: 17143179 [TBL] [Abstract][Full Text] [Related]
8. Chronic alpha1-adrenergic blockade improves hypertension and renal injury in L-NAME and low-renin L-NAME-DOCA hypertensive rats. Wangensteen R; O'Valle F; Del Moral R; Vargas F; Osuna A Med Sci Monit; 2002 Sep; 8(9):BR378-84. PubMed ID: 12221376 [TBL] [Abstract][Full Text] [Related]
9. Congenic strains confirm the presence of salt-sensitivity QTLs on chromosome 1 in the Sabra rat model of hypertension. Yagil C; Hubner N; Kreutz R; Ganten D; Yagil Y Physiol Genomics; 2003 Jan; 12(2):85-95. PubMed ID: 12441404 [TBL] [Abstract][Full Text] [Related]
10. Identification of a QTL on chromosome 1 for impaired autoregulation of RBF in fawn-hooded hypertensive rats. López B; Ryan RP; Moreno C; Sarkis A; Lazar J; Provoost AP; Jacob HJ; Roman RJ Am J Physiol Renal Physiol; 2006 May; 290(5):F1213-21. PubMed ID: 16303858 [TBL] [Abstract][Full Text] [Related]
11. Synergistic QTL interactions between Rf-1 and Rf-3 increase renal damage susceptibility in double congenic rats. Van Dijk SJ; Specht PA; Lazar J; Jacob HJ; Provoost AP Kidney Int; 2006 Apr; 69(8):1369-76. PubMed ID: 16541022 [TBL] [Abstract][Full Text] [Related]
12. Renal damage susceptibility and autoregulation in RF-1 and RF-5 congenic rats. Van Dijk SJ; Specht PA; Lazar J; Jacob HJ; Provoost AP Nephron Exp Nephrol; 2005; 101(2):e59-66. PubMed ID: 15976509 [TBL] [Abstract][Full Text] [Related]
13. Proteinuria and glomerulosclerosis in the Sabra genetic rat model of salt susceptibility. Yagil C; Sapojnikov M; Katni G; Ilan Z; Zangen SW; Rosenmann E; Yagil Y Physiol Genomics; 2002; 9(3):167-78. PubMed ID: 12045297 [TBL] [Abstract][Full Text] [Related]
14. Role of sex, gonadectomy and sex hormones in the development of nitric oxide inhibition-induced hypertension. Sáinz J; Osuna A; Wangensteen R; de Dios Luna J; Rodríguez-Gómez I; Duarte J; Moreno JM; Vargas F Exp Physiol; 2004 Mar; 89(2):155-62. PubMed ID: 15123544 [TBL] [Abstract][Full Text] [Related]
15. Knockout of Fan L; Gao W; Liu Y; Jefferson JR; Fan F; Roman RJ J Pharmacol Exp Ther; 2021 Apr; 377(1):189-198. PubMed ID: 33414130 [TBL] [Abstract][Full Text] [Related]
16. Renal vascular dysfunction precedes the development of renal damage in the hypertensive Fawn-Hooded rat. Ochodnický P; Henning RH; Buikema HJ; de Zeeuw D; Provoost AP; van Dokkum RP Am J Physiol Renal Physiol; 2010 Mar; 298(3):F625-33. PubMed ID: 20007352 [TBL] [Abstract][Full Text] [Related]
17. Genetic basis of the impaired renal myogenic response in FHH rats. Burke M; Pabbidi M; Fan F; Ge Y; Liu R; Williams JM; Sarkis A; Lazar J; Jacob HJ; Roman RJ Am J Physiol Renal Physiol; 2013 Mar; 304(5):F565-77. PubMed ID: 23220727 [TBL] [Abstract][Full Text] [Related]
18. Mapping genetic determinants of kidney damage in rat models. Schulz A; Kreutz R Hypertens Res; 2012 Jul; 35(7):675-94. PubMed ID: 22648060 [TBL] [Abstract][Full Text] [Related]
19. Superiority of combination of thiazide with angiotensin-converting enzyme inhibitor or AT1-receptor blocker over thiazide alone on renoprotection in L-NAME/SHR. Zhou X; Matavelli LC; Ono H; Frohlich ED Am J Physiol Renal Physiol; 2005 Oct; 289(4):F871-9. PubMed ID: 15900021 [TBL] [Abstract][Full Text] [Related]
20. Role of nitric oxide in salt and water excretion in experimental hypertension in hooded (Aguti) rats. Mojiminiyi FB; Anigbogu CN; Sofola OA; Adigun SA Niger Postgrad Med J; 2007 Jun; 14(2):99-104. PubMed ID: 17599104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]