BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 17898144)

  • 1. Receptive field for dorsal cochlear nucleus neurons at multiple sound levels.
    Bandyopadhyay S; Reiss LA; Young ED
    J Neurophysiol; 2007 Dec; 98(6):3505-15. PubMed ID: 17898144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of stimulus spectral contrast on receptive fields of dorsal cochlear nucleus neurons.
    Reiss LA; Bandyopadhyay S; Young ED
    J Neurophysiol; 2007 Oct; 98(4):2133-43. PubMed ID: 17671102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear and nonlinear spectral integration in type IV neurons of the dorsal cochlear nucleus. II. Predicting responses with the use of nonlinear models.
    Nelken I; Kim PJ; Young ED
    J Neurophysiol; 1997 Aug; 78(2):800-11. PubMed ID: 9307114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear temporal receptive fields of neurons in the dorsal cochlear nucleus.
    Bandyopadhyay S; Young ED
    J Neurophysiol; 2013 Nov; 110(10):2414-25. PubMed ID: 23986561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral edge sensitivity in neural circuits of the dorsal cochlear nucleus.
    Reiss LA; Young ED
    J Neurosci; 2005 Apr; 25(14):3680-91. PubMed ID: 15814799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear and nonlinear spectral integration in type IV neurons of the dorsal cochlear nucleus. I. Regions of linear interaction.
    Nelken I; Young ED
    J Neurophysiol; 1997 Aug; 78(2):790-9. PubMed ID: 9307113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs.
    Koka K; Tollin DJ
    Front Neural Circuits; 2014; 8():144. PubMed ID: 25565971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal measures and neural strategies for detection of tones in noise based on responses in anteroventral cochlear nucleus.
    Gai Y; Carney LH
    J Neurophysiol; 2006 Nov; 96(5):2451-64. PubMed ID: 16914617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear modeling of auditory-nerve rate responses to wideband stimuli.
    Young ED; Calhoun BM
    J Neurophysiol; 2005 Dec; 94(6):4441-54. PubMed ID: 16162837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contralateral effects and binaural interactions in dorsal cochlear nucleus.
    Davis KA
    J Assoc Res Otolaryngol; 2005 Sep; 6(3):280-96. PubMed ID: 16075189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling inhibition of type II units in the dorsal cochlear nucleus.
    Hancock KE; Davis KA; Voigt HF
    Biol Cybern; 1997 Jun; 76(6):419-28. PubMed ID: 9263430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus-timing dependent multisensory plasticity in the guinea pig dorsal cochlear nucleus.
    Koehler SD; Shore SE
    PLoS One; 2013; 8(3):e59828. PubMed ID: 23527274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
    Christianson GB; Sahani M; Linden JF
    J Neurosci; 2008 Jan; 28(2):446-55. PubMed ID: 18184787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why do cats need a dorsal cochlear nucleus?
    Nelken I; Young ED
    J Basic Clin Physiol Pharmacol; 1996; 7(3):199-220. PubMed ID: 8910137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals.
    Lerud KD; Almonte FV; Kim JC; Large EW
    Hear Res; 2014 Feb; 308():41-9. PubMed ID: 24091182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive stimulus optimization for auditory cortical neurons.
    O'Connor KN; Petkov CI; Sutter ML
    J Neurophysiol; 2005 Dec; 94(6):4051-67. PubMed ID: 16135553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatosensory context alters auditory responses in the cochlear nucleus.
    Kanold PO; Davis KA; Young ED
    J Neurophysiol; 2011 Mar; 105(3):1063-70. PubMed ID: 21178001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency response areas in the inferior colliculus: nonlinearity and binaural interaction.
    Yu JJ; Young ED
    Front Neural Circuits; 2013; 7():90. PubMed ID: 23675323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal and frequency characteristics of cartwheel cells in the dorsal cochlear nucleus of the awake mouse.
    Portfors CV; Roberts PD
    J Neurophysiol; 2007 Aug; 98(2):744-56. PubMed ID: 17581852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear and nonlinear pathways of spectral information transmission in the cochlear nucleus.
    Yu JJ; Young ED
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11780-6. PubMed ID: 11050209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.